Topic:Scene Graph Generation
What is Scene Graph Generation? Scene graph generation is the process of creating structured representations of scenes that capture the relationships between objects.
Papers and Code
Jun 16, 2025
Abstract:This paper presents SEGO (Semantic Graph Ontology), a cognitive mapping architecture designed to integrate geometric perception, semantic reasoning, and explanation generation into a unified framework for human-centric collaborative robotics. SEGO constructs dynamic cognitive scene graphs that represent not only the spatial configuration of the environment but also the semantic relations and ontological consistency among detected objects. The architecture seamlessly combines SLAM-based localization, deep-learning-based object detection and tracking, and ontology-driven reasoning to enable real-time, semantically coherent mapping.
Via

Jun 16, 2025
Abstract:Semantic querying in complex 3D scenes through free-form language presents a significant challenge. Existing 3D scene understanding methods use large-scale training data and CLIP to align text queries with 3D semantic features. However, their reliance on predefined vocabulary priors from training data hinders free-form semantic querying. Besides, recent advanced methods rely on LLMs for scene understanding but lack comprehensive 3D scene-level information and often overlook the potential inconsistencies in LLM-generated outputs. In our paper, we propose FreeQ-Graph, which enables Free-form Querying with a semantic consistent scene Graph for 3D scene understanding. The core idea is to encode free-form queries from a complete and accurate 3D scene graph without predefined vocabularies, and to align them with 3D consistent semantic labels, which accomplished through three key steps. We initiate by constructing a complete and accurate 3D scene graph that maps free-form objects and their relations through LLM and LVLM guidance, entirely free from training data or predefined priors. Most importantly, we align graph nodes with accurate semantic labels by leveraging 3D semantic aligned features from merged superpoints, enhancing 3D semantic consistency. To enable free-form semantic querying, we then design an LLM-based reasoning algorithm that combines scene-level and object-level information to intricate reasoning. We conducted extensive experiments on 3D semantic grounding, segmentation, and complex querying tasks, while also validating the accuracy of graph generation. Experiments on 6 datasets show that our model excels in both complex free-form semantic queries and intricate relational reasoning.
Via

Jun 14, 2025
Abstract:Robotic task planning in real-world environments requires not only object recognition but also a nuanced understanding of spatial relationships between objects. We present a spatial-relationship-aware dataset of nearly 1,000 robot-acquired indoor images, annotated with object attributes, positions, and detailed spatial relationships. Captured using a Boston Dynamics Spot robot and labelled with a custom annotation tool, the dataset reflects complex scenarios with similar or identical objects and intricate spatial arrangements. We benchmark six state-of-the-art scene-graph generation models on this dataset, analysing their inference speed and relational accuracy. Our results highlight significant differences in model performance and demonstrate that integrating explicit spatial relationships into foundation models, such as ChatGPT 4o, substantially improves their ability to generate executable, spatially-aware plans for robotics. The dataset and annotation tool are publicly available at https://github.com/PengPaulWang/SpatialAwareRobotDataset, supporting further research in spatial reasoning for robotics.
* 7 pages; 7 figures, 1 table
Via

Jun 10, 2025
Abstract:This report presents SceneNet and KnowledgeNet, our approaches developed for the HD-EPIC VQA Challenge 2025. SceneNet leverages scene graphs generated with a multi-modal large language model (MLLM) to capture fine-grained object interactions, spatial relationships, and temporally grounded events. In parallel, KnowledgeNet incorporates ConceptNet's external commonsense knowledge to introduce high-level semantic connections between entities, enabling reasoning beyond directly observable visual evidence. Each method demonstrates distinct strengths across the seven categories of the HD-EPIC benchmark, and their combination within our framework results in an overall accuracy of 44.21% on the challenge, highlighting its effectiveness for complex egocentric VQA tasks.
* Technical report for the HD-EPIC VQA Challenge 2025 (1st place)
Via

Jun 09, 2025
Abstract:Scene-Graph Generation (SGG) seeks to recognize objects in an image and distill their salient pairwise relationships. Most methods depend on dataset-specific supervision to learn the variety of interactions, restricting their usefulness in open-world settings, involving novel objects and/or relations. Even methods that leverage large Vision Language Models (VLMs) typically require benchmark-specific fine-tuning. We introduce Open-World SGG, a training-free, efficient, model-agnostic framework that taps directly into the pretrained knowledge of VLMs to produce scene graphs with zero additional learning. Casting SGG as a zero-shot structured-reasoning problem, our method combines multimodal prompting, embedding alignment, and a lightweight pair-refinement strategy, enabling inference over unseen object vocabularies and relation sets. To assess this setting, we formalize an Open-World evaluation protocol that measures performance when no SGG-specific data have been observed either in terms of objects and relations. Experiments on Visual Genome, Open Images V6, and the Panoptic Scene Graph (PSG) dataset demonstrate the capacity of pretrained VLMs to perform relational understanding without task-level training.
* Accepted in CVPR 2025 Workshop (CVinW)
Via

Jun 09, 2025
Abstract:Reasoning over visual relationships-spatial, functional, interactional, social, etc.-is considered to be a fundamental component of human cognition. Yet, despite the major advances in visual comprehension in multimodal language models (MLMs), precise reasoning over relationships and their generations remains a challenge. We introduce ROBIN: an MLM instruction-tuned with densely annotated relationships capable of constructing high-quality dense scene graphs at scale. To train ROBIN, we curate SVG, a synthetic scene graph dataset by completing the missing relations of selected objects in existing scene graphs using a teacher MLM and a carefully designed filtering process to ensure high-quality. To generate more accurate and rich scene graphs at scale for any image, we introduce SG-EDIT: a self-distillation framework where GPT-4o further refines ROBIN's predicted scene graphs by removing unlikely relations and/or suggesting relevant ones. In total, our dataset contains 146K images and 5.6M relationships for 2.6M objects. Results show that our ROBIN-3B model, despite being trained on less than 3 million instances, outperforms similar-size models trained on over 300 million instances on relationship understanding benchmarks, and even surpasses larger models up to 13B parameters. Notably, it achieves state-of-the-art performance in referring expression comprehension with a score of 88.9, surpassing the previous best of 87.4. Our results suggest that training on the refined scene graph data is crucial to maintaining high performance across diverse visual reasoning task.
* CVPR 2025
Via

Jun 06, 2025
Abstract:High-level autonomous operations depend on a robot's ability to construct a sufficiently expressive model of its environment. Traditional three-dimensional (3D) scene representations, such as point clouds and occupancy grids, provide detailed geometric information but lack the structured, semantic organization needed for high-level reasoning. 3D scene graphs (3DSGs) address this limitation by integrating geometric, topological, and semantic relationships into a multi-level graph-based representation. By capturing hierarchical abstractions of objects and spatial layouts, 3DSGs enable robots to reason about environments in a structured manner, improving context-aware decision-making and adaptive planning. Although most recent work has focused on indoor 3DSGs, this paper investigates their construction and utility in outdoor environments. We present a method for generating a task-agnostic metric-semantic point cloud for large outdoor settings and propose modifications to existing indoor 3DSG generation techniques for outdoor applicability. Our preliminary qualitative results demonstrate the feasibility of outdoor 3DSGs and highlight their potential for future deployment in real-world field robotic applications.
* Presented at the 2025 IEEE ICRA Workshop on Field Robotics
Via

Jun 09, 2025
Abstract:Despite recent advances in retrieval-augmented generation (RAG) for video understanding, effectively understanding long-form video content remains underexplored due to the vast scale and high complexity of video data. Current RAG approaches typically segment videos into fixed-length chunks, which often disrupts the continuity of contextual information and fails to capture authentic scene boundaries. Inspired by the human ability to naturally organize continuous experiences into coherent scenes, we present SceneRAG, a unified framework that leverages large language models to segment videos into narrative-consistent scenes by processing ASR transcripts alongside temporal metadata. SceneRAG further sharpens these initial boundaries through lightweight heuristics and iterative correction. For each scene, the framework fuses information from both visual and textual modalities to extract entity relations and dynamically builds a knowledge graph, enabling robust multi-hop retrieval and generation that account for long-range dependencies. Experiments on the LongerVideos benchmark, featuring over 134 hours of diverse content, confirm that SceneRAG substantially outperforms prior baselines, achieving a win rate of up to 72.5 percent on generation tasks.
Via

Jun 06, 2025
Abstract:Understanding relationships between objects is central to visual intelligence, with applications in embodied AI, assistive systems, and scene understanding. Yet, most visual relationship detection (VRD) models rely on a fixed predicate set, limiting their generalization to novel interactions. A key challenge is the inability to visually ground semantically plausible, but unannotated, relationships hypothesized from external knowledge. This work introduces an iterative visual grounding framework that leverages large language models (LLMs) as structured relational priors. Inspired by expectation-maximization (EM), our method alternates between generating candidate scene graphs from detected objects using an LLM (expectation) and training a visual model to align these hypotheses with perceptual evidence (maximization). This process bootstraps relational understanding beyond annotated data and enables generalization to unseen predicates. Additionally, we introduce a new benchmark for open-world VRD on Visual Genome with 21 held-out predicates and evaluate under three settings: seen, unseen, and mixed. Our model outperforms LLM-only, few-shot, and debiased baselines, achieving mean recall (mR@50) of 15.9, 13.1, and 11.7 on predicate classification on these three sets. These results highlight the promise of grounded LLM priors for scalable open-world visual understanding.
* 22 pages, 9 figures, 5 tables
Via

Jun 09, 2025
Abstract:Automatic indoor layout generation has attracted increasing attention due to its potential in interior design, virtual environment construction, and embodied AI. Existing methods fall into two categories: prompt-driven approaches that leverage proprietary LLM services (e.g., GPT APIs) and learning-based methods trained on layout data upon diffusion-based models. Prompt-driven methods often suffer from spatial inconsistency and high computational costs, while learning-based methods are typically constrained by coarse relational graphs and limited datasets, restricting their generalization to diverse room categories. In this paper, we revisit LLM-based indoor layout generation and present 3D-SynthPlace, a large-scale dataset that combines synthetic layouts generated via a 'GPT synthesize, Human inspect' pipeline, upgraded from the 3D-Front dataset. 3D-SynthPlace contains nearly 17,000 scenes, covering four common room types -- bedroom, living room, kitchen, and bathroom -- enriched with diverse objects and high-level spatial annotations. We further introduce OptiScene, a strong open-source LLM optimized for indoor layout generation, fine-tuned based on our 3D-SynthPlace dataset through our two-stage training. For the warum-up stage I, we adopt supervised fine-tuning (SFT), which is taught to first generate high-level spatial descriptions then conditionally predict concrete object placements. For the reinforcing stage II, to better align the generated layouts with human design preferences, we apply multi-turn direct preference optimization (DPO), which significantly improving layout quality and generation success rates. Extensive experiments demonstrate that OptiScene outperforms traditional prompt-driven and learning-based baselines. Moreover, OptiScene shows promising potential in interactive tasks such as scene editing and robot navigation.
Via
