Topic:Product Recommendation
What is Product Recommendation? Product recommendation is the process of suggesting products to users based on their preferences, behavior, or purchase history.
Papers and Code
Sep 16, 2025
Abstract:Pre-ranking plays a crucial role in large-scale recommender systems by significantly improving the efficiency and scalability within the constraints of providing high-quality candidate sets in real time. The two-tower model is widely used in pre-ranking systems due to a good balance between efficiency and effectiveness with decoupled architecture, which independently processes user and item inputs before calculating their interaction (e.g. dot product or similarity measure). However, this independence also leads to the lack of information interaction between the two towers, resulting in less effectiveness. In this paper, a novel architecture named learnable Fully Interacted Two-tower Model (FIT) is proposed, which enables rich information interactions while ensuring inference efficiency. FIT mainly consists of two parts: Meta Query Module (MQM) and Lightweight Similarity Scorer (LSS). Specifically, MQM introduces a learnable item meta matrix to achieve expressive early interaction between user and item features. Moreover, LSS is designed to further obtain effective late interaction between the user and item towers. Finally, experimental results on several public datasets show that our proposed FIT significantly outperforms the state-of-the-art baseline pre-ranking models.
* SIGIR2025
Via

Sep 15, 2025
Abstract:One of the goals of recommender systems research is to provide insights and methods that can be used by practitioners to build real-world systems that deliver high-quality recommendations to actual people grounded in their genuine interests and needs. We report on our experience trying to apply the news recommendation literature to build POPROX, a live platform for news recommendation research, and reflect on the extent to which the current state of research supports system-building efforts. Our experience highlights several unexpected challenges encountered in building personalization features that are commonly found in products from news aggregators and publishers, and shows how those difficulties are connected to surprising gaps in the literature. Finally, we offer a set of lessons learned from building a live system with a persistent user base and highlight opportunities to make future news recommendation research more applicable and impactful in practice.
Via

Sep 10, 2025
Abstract:Modern search systems play a crucial role in facilitating information acquisition. Traditional search engines typically rely on a cascaded architecture, where results are retrieved through recall, pre-ranking, and ranking stages. The complexity of designing and maintaining multiple modules makes it difficult to achieve holistic performance gains. Recent advances in generative recommendation have motivated the exploration of unified generative search as an alternative. However, existing approaches are not genuinely end-to-end: they typically train an item encoder to tokenize candidates first and then optimize a generator separately, leading to objective inconsistency and limited generalization. To address these limitations, we propose UniSearch, a unified generative search framework for Kuaishou Search. UniSearch replaces the cascaded pipeline with an end-to-end architecture that integrates a Search Generator and a Video Encoder. The Generator produces semantic identifiers of relevant items given a user query, while the Video Encoder learns latent item embeddings and provides their tokenized representations. A unified training framework jointly optimizes both components, enabling mutual enhancement and improving representation quality and generation accuracy. Furthermore, we introduce Search Preference Optimization (SPO), which leverages a reward model and real user feedback to better align generation with user preferences. Extensive experiments on industrial-scale datasets, together with online A/B testing in both short-video and live search scenarios, demonstrate the strong effectiveness and deployment potential of UniSearch. Notably, its deployment in live search yields the largest single-experiment improvement in recent years of our product's history, highlighting its practical value for real-world applications.
Via

Sep 03, 2025
Abstract:Integrating product catalogs and user behavior into LLMs can enhance recommendations with broad world knowledge, but the scale of real-world item catalogs, often containing millions of discrete item identifiers (Item IDs), poses a significant challenge. This contrasts with the smaller, tokenized text vocabularies typically used in LLMs. The predominant view within the LLM-based recommendation literature is that it is infeasible to treat item ids as a first class citizen in the LLM and instead some sort of tokenization of an item into multiple tokens is required. However, this creates a key practical bottleneck in serving these models for real-time low-latency applications. Our paper challenges this predominant practice and integrates item ids as first class citizens into the LLM. We provide simple, yet highly effective, novel training and inference modifications that enable single-token representations of items and single-step decoding. Our method shows improvements in recommendation quality (Recall and NDCG) over existing techniques on the Amazon shopping datasets while significantly improving inference efficiency by 5x-14x. Our work offers an efficiency perspective distinct from that of other popular approaches within LLM-based recommendation, potentially inspiring further research and opening up a new direction for integrating IDs into LLMs. Our code is available here https://drive.google.com/file/d/1cUMj37rV0Z1bCWMdhQ6i4q4eTRQLURtC
Via

Sep 03, 2025
Abstract:Recommender systems often must maximize a primary objective while ensuring secondary ones satisfy minimum thresholds, or "guardrails." This is critical for maintaining a consistent user experience and platform ecosystem, but enforcing these guardrails despite orthogonal system changes is challenging and often requires manual hyperparameter tuning. We introduce the Automated Constraint Targeting (ACT) framework, which automatically finds the minimal set of hyperparameter changes needed to satisfy these guardrails. ACT uses an offline pairwise evaluation on unbiased data to find solutions and continuously retrains to adapt to system and user behavior changes. We empirically demonstrate its efficacy and describe its deployment in a large-scale production environment.
Via

Sep 03, 2025
Abstract:Recommender and search systems commonly rely on Learning To Rank models trained on logged user interactions to order items by predicted relevance. However, such interaction data is often subject to position bias, as users are more likely to click on items that appear higher in the ranking, regardless of their actual relevance. As a result, newly trained models may inherit and reinforce the biases of prior ranking models rather than genuinely improving relevance. A standard approach to mitigate position bias is Inverse Propensity Scoring (IPS), where the model's loss is weighted by the inverse of a propensity function, an estimate of the probability that an item at a given position is examined. However, accurate propensity estimation is challenging, especially in interfaces with complex non-linear layouts. In this paper, we propose a novel method for estimating position bias using Large Language Models (LLMs) applied to logged user interaction data. This approach offers a cost-effective alternative to online experimentation. Our experiments show that propensities estimated with our LLM-as-a-judge approach are stable across score buckets and reveal the row-column effects of Viator's grid layout that simpler heuristics overlook. An IPS-weighted reranker trained with these propensities matches the production model on standard NDCG@10 while improving weighted NDCG@10 by roughly 2%. We will verify these offline gains in forthcoming live-traffic experiments.
* Accepted at the CONSEQUENCES Workshop @ RecSys'25
Via

Aug 25, 2025
Abstract:User queries in real-world recommendation systems often combine structured constraints (e.g., category, attributes) with unstructured preferences (e.g., product descriptions or reviews). We introduce HyST (Hybrid retrieval over Semi-structured Tabular data), a hybrid retrieval framework that combines LLM-powered structured filtering with semantic embedding search to support complex information needs over semi-structured tabular data. HyST extracts attribute-level constraints from natural language using large language models (LLMs) and applies them as metadata filters, while processing the remaining unstructured query components via embedding-based retrieval. Experiments on a semi-structured benchmark show that HyST consistently outperforms tradtional baselines, highlighting the importance of structured filtering in improving retrieval precision, offering a scalable and accurate solution for real-world user queries.
* Accepted at the 2nd EARL Workshop on Evaluating and Applying
Recommender Systems with Large Language Models (RecSys 2025)
Via

Aug 26, 2025
Abstract:Large language models (LLMs) based Recommender Systems (RecSys) can flexibly adapt recommendation systems to different domains. It utilizes in-context learning (ICL), i.e., the prompts, to customize the recommendation functions, which include sensitive historical user-specific item interactions, e.g., implicit feedback like clicked items or explicit product reviews. Such private information may be exposed to novel privacy attack. However, no study has been done on this important issue. We design four membership inference attacks (MIAs), aiming to reveal whether victims' historical interactions have been used by system prompts. They are \emph{direct inquiry, hallucination, similarity, and poisoning attacks}, each of which utilizes the unique features of LLMs or RecSys. We have carefully evaluated them on three LLMs that have been used to develop ICL-LLM RecSys and two well-known RecSys benchmark datasets. The results confirm that the MIA threat on LLM RecSys is realistic: direct inquiry and poisoning attacks showing significantly high attack advantages. We have also analyzed the factors affecting these attacks, such as the number of shots in system prompts and the position of the victim in the shots.
Via

Aug 25, 2025
Abstract:The rapid evolution of e-commerce has exposed the limitations of traditional product retrieval systems in managing complex, multi-turn user interactions. Recent advances in multimodal generative retrieval -- particularly those leveraging multimodal large language models (MLLMs) as retrievers -- have shown promise. However, most existing methods are tailored to single-turn scenarios and struggle to model the evolving intent and iterative nature of multi-turn dialogues when applied naively. Concurrently, test-time scaling has emerged as a powerful paradigm for improving large language model (LLM) performance through iterative inference-time refinement. Yet, its effectiveness typically relies on two conditions: (1) a well-defined problem space (e.g., mathematical reasoning), and (2) the model's ability to self-correct -- conditions that are rarely met in conversational product search. In this setting, user queries are often ambiguous and evolving, and MLLMs alone have difficulty grounding responses in a fixed product corpus. Motivated by these challenges, we propose a novel framework that introduces test-time scaling into conversational multimodal product retrieval. Our approach builds on a generative retriever, further augmented with a test-time reranking (TTR) mechanism that improves retrieval accuracy and better aligns results with evolving user intent throughout the dialogue. Experiments across multiple benchmarks show consistent improvements, with average gains of 14.5 points in MRR and 10.6 points in nDCG@1.
Via

Aug 18, 2025
Abstract:Brain-computer interfaces (BCIs) show enormous potential for advancing personalized medicine. However, BCIs also introduce new avenues for cyber-attacks or security compromises. In this article, we analyze the problem and make recommendations for device manufacturers to better secure devices and to help regulators understand where more guidance is needed to protect patient safety and data confidentiality. Device manufacturers should implement the prior suggestions in their BCI products. These recommendations help protect BCI users from undue risks, including compromised personal health and genetic information, unintended BCI-mediated movement, and many other cybersecurity breaches. Regulators should mandate non-surgical device update methods, strong authentication and authorization schemes for BCI software modifications, encryption of data moving to and from the brain, and minimize network connectivity where possible. We also design a hypothetical, average-case threat model that identifies possible cybersecurity threats to BCI patients and predicts the likeliness of risk for each category of threat. BCIs are at less risk of physical compromise or attack, but are vulnerable to remote attack; we focus on possible threats via network paths to BCIs and suggest technical controls to limit network connections.
* Neuroethics 18, 34 (2025)
Via
