Topic:Product Recommendation
What is Product Recommendation? Product recommendation is the process of suggesting products to users based on their preferences, behavior, or purchase history.
Papers and Code
Apr 29, 2025
Abstract:As new products are emerging daily, recommendation systems are required to quickly adapt to possible new domains without needing extensive retraining. This work presents ``X-Cross'' -- a novel cross-domain sequential-recommendation model that recommends products in new domains by integrating several domain-specific language models; each model is fine-tuned with low-rank adapters (LoRA). Given a recommendation prompt, operating layer by layer, X-Cross dynamically refines the representation of each source language model by integrating knowledge from all other models. These refined representations are propagated from one layer to the next, leveraging the activations from each domain adapter to ensure domain-specific nuances are preserved while enabling adaptability across domains. Using Amazon datasets for sequential recommendation, X-Cross achieves performance comparable to a model that is fine-tuned with LoRA, while using only 25% of the additional parameters. In cross-domain tasks, such as adapting from Toys domain to Tools, Electronics or Sports, X-Cross demonstrates robust performance, while requiring about 50%-75% less fine-tuning data than LoRA to make fine-tuning effective. Furthermore, X-Cross achieves significant improvement in accuracy over alternative cross-domain baselines. Overall, X-Cross enables scalable and adaptive cross-domain recommendations, reducing computational overhead and providing an efficient solution for data-constrained environments.
* Accepted for publication in SIGIR '25
Via

Apr 30, 2025
Abstract:The development of powerful user representations is a key factor in the success of recommender systems (RecSys). Online platforms employ a range of RecSys techniques to personalize user experience across diverse in-app surfaces. User representations are often learned individually through user's historical interactions within each surface and user representations across different surfaces can be shared post-hoc as auxiliary features or additional retrieval sources. While effective, such schemes cannot directly encode collaborative filtering signals across different surfaces, hindering its capacity to discover complex relationships between user behaviors and preferences across the whole platform. To bridge this gap at Snapchat, we seek to conduct universal user modeling (UUM) across different in-app surfaces, learning general-purpose user representations which encode behaviors across surfaces. Instead of replacing domain-specific representations, UUM representations capture cross-domain trends, enriching existing representations with complementary information. This work discusses our efforts in developing initial UUM versions, practical challenges, technical choices and modeling and research directions with promising offline performance. Following successful A/B testing, UUM representations have been launched in production, powering multiple use cases and demonstrating their value. UUM embedding has been incorporated into (i) Long-form Video embedding-based retrieval, leading to 2.78% increase in Long-form Video Open Rate, (ii) Long-form Video L2 ranking, with 19.2% increase in Long-form Video View Time sum, (iii) Lens L2 ranking, leading to 1.76% increase in Lens play time, and (iv) Notification L2 ranking, with 0.87% increase in Notification Open Rate.
* Accepted to the industrial track of SIGIR'25
Via

Apr 29, 2025
Abstract:Online fake news moderation now faces a new challenge brought by the malicious use of large language models (LLMs) in fake news production. Though existing works have shown LLM-generated fake news is hard to detect from an individual aspect, it remains underexplored how its large-scale release will impact the news ecosystem. In this study, we develop a simulation pipeline and a dataset with ~56k generated news of diverse types to investigate the effects of LLM-generated fake news within neural news recommendation systems. Our findings expose a truth decay phenomenon, where real news is gradually losing its advantageous position in news ranking against fake news as LLM-generated news is involved in news recommendation. We further provide an explanation about why truth decay occurs from a familiarity perspective and show the positive correlation between perplexity and news ranking. Finally, we discuss the threats of LLM-generated fake news and provide possible countermeasures. We urge stakeholders to address this emerging challenge to preserve the integrity of news ecosystems.
* ACM SIGIR 2025 Full Paper
Via

Apr 26, 2025
Abstract:In Recommender Systems, users often seek the best products through indirect, vague, or under-specified queries, such as "best shoes for trail running". Such queries, also referred to as implicit superlative queries, pose a significant challenge for standard retrieval and ranking systems as they lack an explicit mention of attributes and require identifying and reasoning over complex factors. We investigate how Large Language Models (LLMs) can generate implicit attributes for ranking as well as reason over them to improve product recommendations for such queries. As a first step, we propose a novel four-point schema for annotating the best product candidates for superlative queries called SUPERB, paired with LLM-based product annotations. We then empirically evaluate several existing retrieval and ranking approaches on our new dataset, providing insights and discussing their integration into real-world e-commerce production systems.
Via

Apr 27, 2025
Abstract:The integration of Artificial Intelligence(AI) into film production has revolutionized efficiency and creativity, yet it simultaneously raises critical ethical and practical challenges. This study explores the dual impact of AI on modern cinema through three objectives: defining the optimal human-AI relationship, balancing creativity with automation, and developing ethical guidelines. By employing a mixed-method approach combining theoretical frameworks (auteur theory, human-technology relations) and case studies (The Safe Zone, Fast & Furious 7, The Brutalist), the research reveals that positioning AI as an "embodiment tool" rather than an independent "alterity partner" preserves human authorship and artistic integrity. Key findings highlight the risks of surveillance capitalism in AI-driven markets and the ethical dilemmas of deepfake technology. The study concludes with actionable recommendations, including international regulatory frameworks and a Human Control Index (HCI) to quantify AI involvement. These insights aim to guide filmmakers, policymakers, and scholars in navigating the evolving AI-cinema landscape while safeguarding cultural diversity and ethical standards.
* 19 pages, 1 figures, 2 tables
Via

Apr 24, 2025
Abstract:In e-commerce, user representations are essential for various applications. Existing methods often use deep learning techniques to convert customer behaviors into implicit embeddings. However, these embeddings are difficult to understand and integrate with external knowledge, limiting the effectiveness of applications such as customer segmentation, search navigation, and product recommendations. To address this, our paper introduces the concept of the customer persona. Condensed from a customer's numerous purchasing histories, a customer persona provides a multi-faceted and human-readable characterization of specific purchase behaviors and preferences, such as Busy Parents or Bargain Hunters. This work then focuses on representing each customer by multiple personas from a predefined set, achieving readable and informative explicit user representations. To this end, we propose an effective and efficient solution GPLR. To ensure effectiveness, GPLR leverages pre-trained LLMs to infer personas for customers. To reduce overhead, GPLR applies LLM-based labeling to only a fraction of users and utilizes a random walk technique to predict personas for the remaining customers. We further propose RevAff, which provides an absolute error $\epsilon$ guarantee while improving the time complexity of the exact solution by a factor of at least $O(\frac{\epsilon\cdot|E|N}{|E|+N\log N})$, where $N$ represents the number of customers and products, and $E$ represents the interactions between them. We evaluate the performance of our persona-based representation in terms of accuracy and robustness for recommendation and customer segmentation tasks using three real-world e-commerce datasets. Most notably, we find that integrating customer persona representations improves the state-of-the-art graph convolution-based recommendation model by up to 12% in terms of NDCG@K and F1-Score@K.
* SIGIR 2025
Via

Apr 24, 2025
Abstract:Fashion styling and personalized recommendations are pivotal in modern retail, contributing substantial economic value in the fashion industry. With the advent of vision-language models (VLM), new opportunities have emerged to enhance retailing through natural language and visual interactions. This work proposes FashionM3, a multimodal, multitask, and multiround fashion assistant, built upon a VLM fine-tuned for fashion-specific tasks. It helps users discover satisfying outfits by offering multiple capabilities including personalized recommendation, alternative suggestion, product image generation, and virtual try-on simulation. Fine-tuned on the novel FashionRec dataset, comprising 331,124 multimodal dialogue samples across basic, personalized, and alternative recommendation tasks, FashionM3 delivers contextually personalized suggestions with iterative refinement through multiround interactions. Quantitative and qualitative evaluations, alongside user studies, demonstrate FashionM3's superior performance in recommendation effectiveness and practical value as a fashion assistant.
Via

Apr 23, 2025
Abstract:The burgeoning presence of multimodal content-sharing platforms propels the development of personalized recommender systems. Previous works usually suffer from data sparsity and cold-start problems, and may fail to adequately explore semantic user-product associations from multimodal data. To address these issues, we propose a novel Multi-Modal Hypergraph Contrastive Learning (MMHCL) framework for user recommendation. For a comprehensive information exploration from user-product relations, we construct two hypergraphs, i.e. a user-to-user (u2u) hypergraph and an item-to-item (i2i) hypergraph, to mine shared preferences among users and intricate multimodal semantic resemblance among items, respectively. This process yields denser second-order semantics that are fused with first-order user-item interaction as complementary to alleviate the data sparsity issue. Then, we design a contrastive feature enhancement paradigm by applying synergistic contrastive learning. By maximizing/minimizing the mutual information between second-order (e.g. shared preference pattern for users) and first-order (information of selected items for users) embeddings of the same/different users and items, the feature distinguishability can be effectively enhanced. Compared with using sparse primary user-item interaction only, our MMHCL obtains denser second-order hypergraphs and excavates more abundant shared attributes to explore the user-product associations, which to a certain extent alleviates the problems of data sparsity and cold-start. Extensive experiments have comprehensively demonstrated the effectiveness of our method. Our code is publicly available at: https://github.com/Xu107/MMHCL.
* 23 pages, 8 figures. This manuscript is currently under major
revision for ACM Transactions on Multimedia Computing, Communications, and
Applications (ACM TOMM)
Via

Apr 23, 2025
Abstract:We propose an automated approach to bug assignment to developers in large open-source software projects. This way, we assist human bug triagers who are in charge of finding the best developer with the right level of expertise in a particular area to be assigned to a newly reported issue. Our approach is based on the history of software development as documented in the issue tracking systems. We deploy BERTopic and techniques from TopicMiner. Our approach works based on the bug reports' features, such as the corresponding products and components, as well as their priority and severity levels. We sort developers based on their experience with specific combinations of new reports. The evaluation is performed using Top-k accuracy, and the results are compared with the reported results in prior work, namely TopicMiner MTM, BUGZIE, Bug triaging via deep Reinforcement Learning BT-RL, and LDA-SVM. The evaluation data come from various Eclipse and Mozilla projects, such as JDT, Firefox, and Thunderbird.
Via

Apr 16, 2025
Abstract:Despite the rapid evolution of learning and computer vision algorithms, Fine-Grained Classification (FGC) still poses an open problem in many practically relevant applications. In the retail domain, for example, the identification of fast changing and visually highly similar products and their properties are key to automated price-monitoring and product recommendation. This paper presents a novel Visual RAG pipeline that combines the Retrieval Augmented Generation (RAG) approach and Vision Language Models (VLMs) for few-shot FGC. This Visual RAG pipeline extracts product and promotion data in advertisement leaflets from various retailers and simultaneously predicts fine-grained product ids along with price and discount information. Compared to previous approaches, the key characteristic of the Visual RAG pipeline is that it allows the prediction of novel products without re-training, simply by adding a few class samples to the RAG database. Comparing several VLM back-ends like GPT-4o [23], GPT-4o-mini [24], and Gemini 2.0 Flash [10], our approach achieves 86.8% accuracy on a diverse dataset.
Via
