IMLA, Offenburg University
Abstract:Accurate and fast urban noise prediction is pivotal for public health and for regulatory workflows in cities, where the Environmental Noise Directive mandates regular strategic noise maps and action plans, often needed in permission workflows, right-of-way allocation, and construction scheduling. Physics-based solvers are too slow for such time-critical, iterative "what-if" studies. We evaluate conditional Normalizing Flows (Full-Glow) for generating for generating standards-compliant urban sound-pressure maps from 2D urban layouts in real time per 256x256 map on a single RTX 4090), enabling interactive exploration directly on commodity hardware. On datasets covering Baseline, Diffraction, and Reflection regimes, our model accelerates map generation by >2000 times over a reference solver while improving NLoS accuracy by up to 24% versus prior deep models; in Baseline NLoS we reach 0.65 dB MAE with high structural fidelity. The model reproduces diffraction and interference patterns and supports instant recomputation under source or geometry changes, making it a practical engine for urban planning, compliance mapping, and operations (e.g., temporary road closures, night-work variance assessments).
Abstract:The process of quantifying mold colonies on Petri dish samples is of critical importance for the assessment of indoor air quality, as high colony counts can indicate potential health risks and deficiencies in ventilation systems. Conventionally the automation of such a labor-intensive process, as well as other tasks in microbiology, relies on the manual annotation of large datasets and the subsequent extensive training of models like YoloV9. To demonstrate that exhaustive annotation is not a prerequisite anymore when tackling a new vision task, we compile a representative dataset of 5000 Petri dish images annotated with bounding boxes, simulating both a traditional data collection approach as well as few-shot and low-shot scenarios with well curated subsets with instance level masks. We benchmark three vision foundation models against traditional baselines on task specific metrics, reflecting realistic real-world requirements. Notably, MaskDINO attains near-parity with an extensively trained YoloV9 model while finetuned only on 150 images, retaining competitive performance with as few as 25 images, still being reliable on $\approx$ 70% of the samples. Our results show that data-efficient foundation models can match traditional approaches with only a fraction of the required data, enabling earlier development and faster iterative improvement of automated microbiological systems with a superior upper-bound performance than traditional models would achieve.
Abstract:Despite the rapid evolution of learning and computer vision algorithms, Fine-Grained Classification (FGC) still poses an open problem in many practically relevant applications. In the retail domain, for example, the identification of fast changing and visually highly similar products and their properties are key to automated price-monitoring and product recommendation. This paper presents a novel Visual RAG pipeline that combines the Retrieval Augmented Generation (RAG) approach and Vision Language Models (VLMs) for few-shot FGC. This Visual RAG pipeline extracts product and promotion data in advertisement leaflets from various retailers and simultaneously predicts fine-grained product ids along with price and discount information. Compared to previous approaches, the key characteristic of the Visual RAG pipeline is that it allows the prediction of novel products without re-training, simply by adding a few class samples to the RAG database. Comparing several VLM back-ends like GPT-4o [23], GPT-4o-mini [24], and Gemini 2.0 Flash [10], our approach achieves 86.8% accuracy on a diverse dataset.
Abstract:Seismic processing plays a crucial role in transforming raw data into high-quality subsurface images, pivotal for various geoscience applications. Despite its importance, traditional seismic processing techniques face challenges such as noisy and damaged data and the reliance on manual, time-consuming workflows. The emergence of deep learning approaches has introduced effective and user-friendly alternatives, yet many of these deep learning approaches rely on synthetic datasets and specialized neural networks. Recently, foundation models have gained traction in the seismic domain, due to their success in natural imaging. This paper investigates the application of foundation models in seismic processing on the tasks: demultiple, interpolation, and denoising. It evaluates the impact of different model characteristics, such as pre-training technique and neural network architecture, on performance and efficiency. Rather than proposing a single seismic foundation model, this paper critically examines various natural image foundation models and suggest some promising candidates for future exploration.
Abstract:The image-to-image translation abilities of generative learning models have recently made significant progress in the estimation of complex (steered) mappings between image distributions. While appearance based tasks like image in-painting or style transfer have been studied at length, we propose to investigate the potential of generative models in the context of physical simulations. Providing a dataset of 300k image-pairs and baseline evaluations for three different physical simulation tasks, we propose a benchmark to investigate the following research questions: i) are generative models able to learn complex physical relations from input-output image pairs? ii) what speedups can be achieved by replacing differential equation based simulations? While baseline evaluations of different current models show the potential for high speedups (ii), these results also show strong limitations toward the physical correctness (i). This underlines the need for new methods to enforce physical correctness. Data, baseline models and evaluation code http://www.physics-gen.org.
Abstract:In this paper, we present an approach for evaluating attribution maps, which play a central role in interpreting the predictions of convolutional neural networks (CNNs). We show that the widely used insertion/deletion metrics are susceptible to distribution shifts that affect the reliability of the ranking. Our method proposes to replace pixel modifications with adversarial perturbations, which provides a more robust evaluation framework. By using smoothness and monotonicity measures, we illustrate the effectiveness of our approach in correcting distribution shifts. In addition, we conduct the most comprehensive quantitative and qualitative assessment of attribution maps to date. Introducing baseline attribution maps as sanity checks, we find that our metric is the only contender to pass all checks. Using Kendall's $\tau$ rank correlation coefficient, we show the increased consistency of our metric across 15 dataset-architecture combinations. Of the 16 attribution maps tested, our results clearly show SmoothGrad to be the best map currently available. This research makes an important contribution to the development of attribution maps by providing a reliable and consistent evaluation framework. To ensure reproducibility, we will provide the code along with our results.




Abstract:Wood species identification plays a crucial role in various industries, from ensuring the legality of timber products to advancing ecological conservation efforts. This paper introduces WoodYOLO, a novel object detection algorithm specifically designed for microscopic wood fiber analysis. Our approach adapts the YOLO architecture to address the challenges posed by large, high-resolution microscopy images and the need for high recall in localization of the cell type of interest (vessel elements). Our results show that WoodYOLO significantly outperforms state-of-the-art models, achieving performance gains of 12.9% and 6.5% in F2 score over YOLOv10 and YOLOv7, respectively. This improvement in automated wood cell type localization capabilities contributes to enhancing regulatory compliance, supporting sustainable forestry practices, and promoting biodiversity conservation efforts globally.




Abstract:Not all learnable parameters (e.g., weights) contribute equally to a neural network's decision function. In fact, entire layers' parameters can sometimes be reset to random values with little to no impact on the model's decisions. We revisit earlier studies that examined how architecture and task complexity influence this phenomenon and ask: is this phenomenon also affected by how we train the model? We conducted experimental evaluations on a diverse set of ImageNet-1k classification models to explore this, keeping the architecture and training data constant but varying the training pipeline. Our findings reveal that the training method strongly influences which layers become critical to the decision function for a given task. For example, improved training regimes and self-supervised training increase the importance of early layers while significantly under-utilizing deeper layers. In contrast, methods such as adversarial training display an opposite trend. Our preliminary results extend previous findings, offering a more nuanced understanding of the inner mechanics of neural networks. Code: https://github.com/paulgavrikov/layer_criticality




Abstract:This paper introduces Top-GAP, a novel regularization technique that enhances the explainability and robustness of convolutional neural networks. By constraining the spatial size of the learned feature representation, our method forces the network to focus on the most salient image regions, effectively reducing background influence. Using adversarial attacks and the Effective Receptive Field, we show that Top-GAP directs more attention towards object pixels rather than the background. This leads to enhanced interpretability and robustness. We achieve over 50% robust accuracy on CIFAR-10 with PGD $\epsilon=\frac{8}{255}$ and $20$ iterations while maintaining the original clean accuracy. Furthermore, we see increases of up to 5% accuracy against distribution shifts. Our approach also yields more precise object localization, as evidenced by up to 25% improvement in Intersection over Union (IOU) compared to methods like GradCAM and Recipro-CAM.
Abstract:Most production-level deployments for Visual Question Answering (VQA) tasks are still build as processing pipelines of independent steps including image pre-processing, object- and text detection, Optical Character Recognition (OCR) and (mostly supervised) object classification. However, the recent advances in vision Foundation Models [25] and Vision Language Models (VLMs) [23] raise the question if these custom trained, multi-step approaches can be replaced with pre-trained, single-step VLMs. This paper analyzes the performance and limits of various VLMs in the context of VQA and OCR [5, 9, 12] tasks in a production-level scenario. Using data from the Retail-786k [10] dataset, we investigate the capabilities of pre-trained VLMs to answer detailed questions about advertised products in images. Our study includes two commercial models, GPT-4V [16] and GPT-4o [17], as well as four open-source models: InternVL [5], LLaVA 1.5 [12], LLaVA-NeXT [13], and CogAgent [9]. Our initial results show, that there is in general no big performance gap between open-source and commercial models. However, we observe a strong task dependent variance in VLM performance: while most models are able to answer questions regarding the product brand and price with high accuracy, they completely fail at the same time to correctly identity the specific product name or discount. This indicates the problem of VLMs to solve fine-grained classification tasks as well to model the more abstract concept of discounts.