Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
Spoken question-answering (SQA) systems relying on automatic speech recognition (ASR) often struggle with accurately recognizing medical terminology. To this end, we propose MedSpeak, a novel knowledge graph-aided ASR error correction framework that refines noisy transcripts and improves downstream answer prediction by leveraging both semantic relationships and phonetic information encoded in a medical knowledge graph, together with the reasoning power of LLMs. Comprehensive experimental results on benchmarks demonstrate that MedSpeak significantly improves the accuracy of medical term recognition and overall medical SQA performance, establishing MedSpeak as a state-of-the-art solution for medical SQA. The code is available at https://github.com/RainieLLM/MedSpeak.
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
Bangla, one of the most widely spoken languages, remains underrepresented in state-of-the-art automatic speech recognition (ASR) research, particularly under noisy and speaker-diverse conditions. This paper presents BanglaRobustNet, a hybrid denoising-attention framework built on Wav2Vec-BERT, designed to address these challenges. The architecture integrates a diffusion-based denoising module to suppress environmental noise while preserving Bangla-specific phonetic cues, and a contextual cross-attention module that conditions recognition on speaker embeddings for robustness across gender, age, and dialects. Trained end-to-end with a composite objective combining CTC loss, phonetic consistency, and speaker alignment, BanglaRobustNet achieves substantial reductions in word error rate (WER) and character error rate (CER) compared to Wav2Vec-BERT and Whisper baselines. Evaluations on Mozilla Common Voice Bangla and augmented noisy speech confirm the effectiveness of our approach, establishing BanglaRobustNet as a robust ASR system tailored to low-resource, noise-prone linguistic settings.
Single-word Automatic Speech Recognition (ASR) is a challenging task due to the lack of linguistic context and sensitivity to noise, pronunciation variation, and channel artifacts, especially in low-resource, communication-critical domains such as healthcare and emergency response. This paper reviews recent deep learning approaches and proposes a modular framework for robust single-word detection. The system combines denoising and normalization with a hybrid ASR front end (Whisper + Vosk) and a verification layer designed to handle out-of-vocabulary words and degraded audio. The verification layer supports multiple matching strategies, including embedding similarity, edit distance, and LLM-based matching with optional contextual guidance. We evaluate the framework on the Google Speech Commands dataset and a curated real-world dataset collected from telephony and messaging platforms under bandwidth-limited conditions. Results show that while the hybrid ASR front end performs well on clean audio, the verification layer significantly improves accuracy on noisy and compressed channels. Context-guided and LLM-based matching yield the largest gains, demonstrating that lightweight verification and context mechanisms can substantially improve single-word ASR robustness without sacrificing latency required for real-time telephony applications.
In audiovisual automatic speech recognition (AV-ASR) systems, information fusion of visual features in a pre-trained ASR has been proven as a promising method to improve noise robustness. In this work, based on the prominent Whisper ASR, first, we propose a simple and effective visual fusion method -- use of visual features both in encoder and decoder (dual-use) -- to learn the audiovisual interactions in the encoder and to weigh modalities in the decoder. Second, we compare visual fusion methods in Whisper models of various sizes. Our proposed dual-use method shows consistent noise robustness improvement, e.g., a 35% relative improvement (WER: 4.41% vs. 6.83%) based on Whisper small, and a 57% relative improvement (WER: 4.07% vs. 9.53%) based on Whisper medium, compared to typical reference middle fusion in babble noise with a signal-to-noise ratio (SNR) of 0dB. Third, we conduct ablation studies examining the impact of various module designs and fusion options. Fine-tuned on 1929 hours of audiovisual data, our dual-use method using Whisper medium achieves 4.08% (MUSAN babble noise) and 4.43% (NoiseX babble noise) average WER across various SNRs, thereby establishing a new state-of-the-art in noisy conditions on the LRS3 AV-ASR benchmark. Our code is at https://github.com/ifnspaml/Dual-Use-AVASR
Audio-visual speech recognition (AVSR) typically improves recognition accuracy in noisy environments by integrating noise-immune visual cues with audio signals. Nevertheless, high-noise audio inputs are prone to introducing adverse interference into the feature fusion process. To mitigate this, recent AVSR methods often adopt mask-based strategies to filter audio noise during feature interaction and fusion, yet such methods risk discarding semantically relevant information alongside noise. In this work, we propose an end-to-end noise-robust AVSR framework coupled with speech enhancement, eliminating the need for explicit noise mask generation. This framework leverages a Conformer-based bottleneck fusion module to implicitly refine noisy audio features with video assistance. By reducing modality redundancy and enhancing inter-modal interactions, our method preserves speech semantic integrity to achieve robust recognition performance. Experimental evaluations on the public LRS3 benchmark suggest that our method outperforms prior advanced mask-based baselines under noisy conditions.
We introduce a voice-agentic framework that learns one critical omni-understanding skill: knowing when to trust itself versus when to consult external audio perception. Our work is motivated by a crucial yet counterintuitive finding: naively fine-tuning an omni-model on both speech recognition and external sound understanding tasks often degrades performance, as the model can be easily misled by noisy hypotheses. To address this, our framework, Speech-Hands, recasts the problem as an explicit self-reflection decision. This learnable reflection primitive proves effective in preventing the model from being derailed by flawed external candidates. We show that this agentic action mechanism generalizes naturally from speech recognition to complex, multiple-choice audio reasoning. Across the OpenASR leaderboard, Speech-Hands consistently outperforms strong baselines by 12.1% WER on seven benchmarks. The model also achieves 77.37% accuracy and high F1 on audio QA decisions, showing robust generalization and reliability across diverse audio question answering datasets. By unifying perception and decision-making, our work offers a practical path toward more reliable and resilient audio intelligence.
Noise-robust automatic speech recognition (ASR) has been commonly addressed by applying speech enhancement (SE) at the waveform level before recognition. However, speech-level enhancement does not always translate into consistent recognition improvements due to residual distortions and mismatches with the latent space of the ASR encoder. In this letter, we introduce a complementary strategy termed latent-level enhancement, where distorted representations are refined during ASR inference. Specifically, we propose a plug-and-play Flow Matching Refinement module (FM-Refiner) that operates on the output latents of a pretrained CTC-based ASR encoder. Trained to map imperfect latents-either directly from noisy inputs or from enhanced-but-imperfect speech-toward their clean counterparts, the FM-Refiner is applied only at inference, without fine-tuning ASR parameters. Experiments show that FM-Refiner consistently reduces word error rate, both when directly applied to noisy inputs and when combined with conventional SE front-ends. These results demonstrate that latent-level refinement via flow matching provides a lightweight and effective complement to existing SE approaches for robust ASR.
Speech enhancement methods are commonly believed to improve the performance of automatic speech recognition (ASR) in noisy environments. However, the effectiveness of these techniques cannot be taken for granted in the case of modern large-scale ASR models trained on diverse, noisy data. We present a systematic evaluation of MetricGAN-plus-voicebank denoising on four state-of-the-art ASR systems: OpenAI Whisper, NVIDIA Parakeet, Google Gemini Flash 2.0, Parrotlet-a using 500 medical speech recordings under nine noise conditions. ASR performance is measured using semantic WER (semWER), a normalized word error rate (WER) metric accounting for domain-specific normalizations. Our results reveal a counterintuitive finding: speech enhancement preprocessing degrades ASR performance across all noise conditions and models. Original noisy audio achieves lower semWER than enhanced audio in all 40 tested configurations (4 models x 10 conditions), with degradations ranging from 1.1% to 46.6% absolute semWER increase. These findings suggest that modern ASR models possess sufficient internal noise robustness and that traditional speech enhancement may remove acoustic features critical for ASR. For practitioners deploying medical scribe systems in noisy clinical environments, our results indicate that preprocessing audio with noise reduction techniques might not just be computationally wasteful but also be potentially harmful to the transcription accuracy.