Audio-Visual Speech Recognition (AVSR) leverages both acoustic and visual cues to improve speech recognition under noisy conditions. A central question is how to design a fusion mechanism that allows the model to effectively exploit visual information when the audio signal is degraded, while maintaining strong performance on clean speech. We propose CoBRA (Cross-modal Bottleneck for Robust AVSR), a bottleneck-based fusion framework that introduces a compact set of learnable tokens to mediate cross-modal exchange. By regulating information flow through these tokens, the audio stream can reliably access essential visual cues even under adverse or out-of-domain noise. Despite limited training data, our model surpasses comparable baselines and remains competitive with large-scale systems through noise-adaptive fusion, demonstrating both efficiency and robustness. Ablation studies highlight that the depth of fusion is the most critical factor, underscoring its importance in designing robust AVSR systems.
Discretized representations of speech signals are efficient alternatives to continuous features for various speech applications, including automatic speech recognition (ASR) and speech language models. However, these representations, such as semantic or phonetic tokens derived from clustering outputs of self-supervised learning (SSL) speech models, are susceptible to environmental noise, which can degrade backend task performance. In this work, we introduce a frontend system that estimates clean speech tokens from noisy speech and evaluate it on an ASR backend using semantic tokens. We consider four types of enhancement models based on their input/output domains: wave-to-wave, token-to-token, continuous SSL features-to-token, and wave-to-token. These models are trained independently of ASR backends. Experiments on the CHiME-4 dataset demonstrate that wave-to-token enhancement achieves the best performance among the frontends. Moreover, it mostly outperforms the ASR system based on continuous SSL features.
Pre-trained models for automatic speech recognition (ASR) and speech enhancement (SE) have exhibited remarkable capabilities under matched noise and channel conditions. However, these models often suffer from severe performance degradation when confronted with domain shifts, particularly in the presence of unseen noise and channel distortions. In view of this, we in this paper present URSA-GAN, a unified and domain-aware generative framework specifically designed to mitigate mismatches in both noise and channel conditions. URSA-GAN leverages a dual-embedding architecture that consists of a noise encoder and a channel encoder, each pre-trained with limited in-domain data to capture domain-relevant representations. These embeddings condition a GAN-based speech generator, facilitating the synthesis of speech that is acoustically aligned with the target domain while preserving phonetic content. To enhance generalization further, we propose dynamic stochastic perturbation, a novel regularization technique that introduces controlled variability into the embeddings during generation, promoting robustness to unseen domains. Empirical results demonstrate that URSA-GAN effectively reduces character error rates in ASR and improves perceptual metrics in SE across diverse noisy and mismatched channel scenarios. Notably, evaluations on compound test conditions with both channel and noise degradations confirm the generalization ability of URSA-GAN, yielding relative improvements of 16.16% in ASR performance and 15.58% in SE metrics.
Accented speech remains a persistent challenge for automatic speech recognition (ASR), as most models are trained on data dominated by a few high-resource English varieties, leading to substantial performance degradation for other accents. Accent-agnostic approaches improve robustness yet struggle with heavily accented or unseen varieties, while accent-specific methods rely on limited and often noisy labels. We introduce Moe-Ctc, a Mixture-of-Experts architecture with intermediate CTC supervision that jointly promotes expert specialization and generalization. During training, accent-aware routing encourages experts to capture accent-specific patterns, which gradually transitions to label-free routing for inference. Each expert is equipped with its own CTC head to align routing with transcription quality, and a routing-augmented loss further stabilizes optimization. Experiments on the Mcv-Accent benchmark demonstrate consistent gains across both seen and unseen accents in low- and high-resource conditions, achieving up to 29.3% relative WER reduction over strong FastConformer baselines.
Spoken question-answering (SQA) systems relying on automatic speech recognition (ASR) often struggle with accurately recognizing medical terminology. To this end, we propose MedSpeak, a novel knowledge graph-aided ASR error correction framework that refines noisy transcripts and improves downstream answer prediction by leveraging both semantic relationships and phonetic information encoded in a medical knowledge graph, together with the reasoning power of LLMs. Comprehensive experimental results on benchmarks demonstrate that MedSpeak significantly improves the accuracy of medical term recognition and overall medical SQA performance, establishing MedSpeak as a state-of-the-art solution for medical SQA. The code is available at https://github.com/RainieLLM/MedSpeak.
Bangla, one of the most widely spoken languages, remains underrepresented in state-of-the-art automatic speech recognition (ASR) research, particularly under noisy and speaker-diverse conditions. This paper presents BanglaRobustNet, a hybrid denoising-attention framework built on Wav2Vec-BERT, designed to address these challenges. The architecture integrates a diffusion-based denoising module to suppress environmental noise while preserving Bangla-specific phonetic cues, and a contextual cross-attention module that conditions recognition on speaker embeddings for robustness across gender, age, and dialects. Trained end-to-end with a composite objective combining CTC loss, phonetic consistency, and speaker alignment, BanglaRobustNet achieves substantial reductions in word error rate (WER) and character error rate (CER) compared to Wav2Vec-BERT and Whisper baselines. Evaluations on Mozilla Common Voice Bangla and augmented noisy speech confirm the effectiveness of our approach, establishing BanglaRobustNet as a robust ASR system tailored to low-resource, noise-prone linguistic settings.
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
Single-word Automatic Speech Recognition (ASR) is a challenging task due to the lack of linguistic context and sensitivity to noise, pronunciation variation, and channel artifacts, especially in low-resource, communication-critical domains such as healthcare and emergency response. This paper reviews recent deep learning approaches and proposes a modular framework for robust single-word detection. The system combines denoising and normalization with a hybrid ASR front end (Whisper + Vosk) and a verification layer designed to handle out-of-vocabulary words and degraded audio. The verification layer supports multiple matching strategies, including embedding similarity, edit distance, and LLM-based matching with optional contextual guidance. We evaluate the framework on the Google Speech Commands dataset and a curated real-world dataset collected from telephony and messaging platforms under bandwidth-limited conditions. Results show that while the hybrid ASR front end performs well on clean audio, the verification layer significantly improves accuracy on noisy and compressed channels. Context-guided and LLM-based matching yield the largest gains, demonstrating that lightweight verification and context mechanisms can substantially improve single-word ASR robustness without sacrificing latency required for real-time telephony applications.
In audiovisual automatic speech recognition (AV-ASR) systems, information fusion of visual features in a pre-trained ASR has been proven as a promising method to improve noise robustness. In this work, based on the prominent Whisper ASR, first, we propose a simple and effective visual fusion method -- use of visual features both in encoder and decoder (dual-use) -- to learn the audiovisual interactions in the encoder and to weigh modalities in the decoder. Second, we compare visual fusion methods in Whisper models of various sizes. Our proposed dual-use method shows consistent noise robustness improvement, e.g., a 35% relative improvement (WER: 4.41% vs. 6.83%) based on Whisper small, and a 57% relative improvement (WER: 4.07% vs. 9.53%) based on Whisper medium, compared to typical reference middle fusion in babble noise with a signal-to-noise ratio (SNR) of 0dB. Third, we conduct ablation studies examining the impact of various module designs and fusion options. Fine-tuned on 1929 hours of audiovisual data, our dual-use method using Whisper medium achieves 4.08% (MUSAN babble noise) and 4.43% (NoiseX babble noise) average WER across various SNRs, thereby establishing a new state-of-the-art in noisy conditions on the LRS3 AV-ASR benchmark. Our code is at https://github.com/ifnspaml/Dual-Use-AVASR
Audio-visual speech recognition (AVSR) typically improves recognition accuracy in noisy environments by integrating noise-immune visual cues with audio signals. Nevertheless, high-noise audio inputs are prone to introducing adverse interference into the feature fusion process. To mitigate this, recent AVSR methods often adopt mask-based strategies to filter audio noise during feature interaction and fusion, yet such methods risk discarding semantically relevant information alongside noise. In this work, we propose an end-to-end noise-robust AVSR framework coupled with speech enhancement, eliminating the need for explicit noise mask generation. This framework leverages a Conformer-based bottleneck fusion module to implicitly refine noisy audio features with video assistance. By reducing modality redundancy and enhancing inter-modal interactions, our method preserves speech semantic integrity to achieve robust recognition performance. Experimental evaluations on the public LRS3 benchmark suggest that our method outperforms prior advanced mask-based baselines under noisy conditions.