Abstract:Spatial Semantic Segmentation of Sound Scenes (S5) aims to enhance technologies for sound event detection and separation from multi-channel input signals that mix multiple sound events with spatial information. This is a fundamental basis of immersive communication. The ultimate goal is to separate sound event signals with 6 Degrees of Freedom (6DoF) information into dry sound object signals and metadata about the object type (sound event class) and representing spatial information, including direction. However, because several existing challenge tasks already provide some of the subset functions, this task for this year focuses on detecting and separating sound events from multi-channel spatial input signals. This paper outlines the S5 task setting of the Detection and Classification of Acoustic Scenes and Events (DCASE) 2025 Challenge Task 4 and the DCASE2025 Task 4 Dataset, newly recorded and curated for this task. We also report experimental results for an S5 system trained and evaluated on this dataset. The full version of this paper will be published after the challenge results are made public.
Abstract:End-to-end speaker diarization enables accurate overlap-aware diarization by jointly estimating multiple speakers' speech activities in parallel. This approach is data-hungry, requiring a large amount of labeled conversational data, which cannot be fully obtained from real datasets alone. To address this issue, large-scale simulated data is often used for pretraining, but it requires enormous storage and I/O capacity, and simulating data that closely resembles real conversations remains challenging. In this paper, we propose pretraining a model to identify multiple speakers from an input fully overlapped mixture as an alternative to pretraining a diarization model. This method eliminates the need to prepare a large-scale simulated dataset while leveraging large-scale speaker recognition datasets for training. Through comprehensive experiments, we demonstrate that the proposed method enables a highly accurate yet lightweight local diarization model without simulated conversational data.
Abstract:Self-supervised learning (SSL) models have significantly advanced speech processing tasks, and several benchmarks have been proposed to validate their effectiveness. However, previous benchmarks have primarily focused on single-speaker scenarios, with less exploration of target-speaker tasks in noisy, multi-talker conditions -- a more challenging yet practical case. In this paper, we introduce the Target-Speaker Speech Processing Universal Performance Benchmark (TS-SUPERB), which includes four widely recognized target-speaker processing tasks that require identifying the target speaker and extracting information from the speech mixture. In our benchmark, the speaker embedding extracted from enrollment speech is used as a clue to condition downstream models. The benchmark result reveals the importance of evaluating SSL models in target speaker scenarios, demonstrating that performance cannot be easily inferred from related single-speaker tasks. Moreover, by using a unified SSL-based target speech encoder, consisting of a speaker encoder and an extractor module, we also investigate joint optimization across TS tasks to leverage mutual information and demonstrate its effectiveness.
Abstract:Multi-channel acoustic signal processing is a well-established and powerful tool to exploit the spatial diversity between a target signal and non-target or noise sources for signal enhancement. However, the textbook solutions for optimal data-dependent spatial filtering rest on the knowledge of second-order statistical moments of the signals, which have traditionally been difficult to acquire. In this contribution, we compare model-based, purely data-driven, and hybrid approaches to parameter estimation and filtering, where the latter tries to combine the benefits of model-based signal processing and data-driven deep learning to overcome their individual deficiencies. We illustrate the underlying design principles with examples from noise reduction, source separation, and dereverberation.
Abstract:In spite of the popularity of end-to-end diarization systems nowadays, modular systems comprised of voice activity detection (VAD), speaker embedding extraction plus clustering, and overlapped speech detection (OSD) plus handling still attain competitive performance in many conditions. However, one of the main drawbacks of modular systems is the need to run (and train) different modules independently. In this work, we propose an approach to jointly train a model to produce speaker embeddings, VAD and OSD simultaneously and reach competitive performance at a fraction of the inference time of a standard approach. Furthermore, the joint inference leads to a simplified overall pipeline which brings us one step closer to a unified clustering-based method that can be trained end-to-end towards a diarization-specific objective.
Abstract:This paper proposes a guided speaker embedding extraction system, which extracts speaker embeddings of the target speaker using speech activities of target and interference speakers as clues. Several methods for long-form overlapped multi-speaker audio processing are typically two-staged: i) segment-level processing and ii) inter-segment speaker matching. Speaker embeddings are often used for the latter purpose. Typical speaker embedding extraction approaches only use single-speaker intervals to avoid corrupting the embeddings with speech from interference speakers. However, this often makes speaker embeddings impossible to extract because sufficiently long non-overlapping intervals are not always available. In this paper, we propose using speaker activities as clues to extract the embedding of the speaker-of-interest directly from overlapping speech. Specifically, we concatenate the activity of target and non-target speakers to acoustic features before being fed to the model. We also condition the attention weights used for pooling so that the attention weights of the intervals in which the target speaker is inactive are zero. The effectiveness of the proposed method is demonstrated in speaker verification and speaker diarization.
Abstract:Target-speaker speech processing (TS) tasks, such as target-speaker automatic speech recognition (TS-ASR), target speech extraction (TSE), and personal voice activity detection (p-VAD), are important for extracting information about a desired speaker's speech even when it is corrupted by interfering speakers. While most studies have focused on training schemes or system architectures for each specific task, the auxiliary network for embedding target-speaker cues has not been investigated comprehensively in a unified cross-task evaluation. Therefore, this paper aims to address a fundamental question: what is the preferred speaker embedding for TS tasks? To this end, for the TS-ASR, TSE, and p-VAD tasks, we compare pre-trained speaker encoders (i.e., self-supervised or speaker recognition models) that compute speaker embeddings from pre-recorded enrollment speech of the target speaker with ideal speaker embeddings derived directly from the target speaker's identity in the form of a one-hot vector. To further understand the properties of ideal speaker embedding, we optimize it using a gradient-based approach to improve performance on the TS task. Our analysis reveals that speaker verification performance is somewhat unrelated to TS task performances, the one-hot vector outperforms enrollment-based ones, and the optimal embedding depends on the input mixture.
Abstract:Mamba is a newly proposed architecture which behaves like a recurrent neural network (RNN) with attention-like capabilities. These properties are promising for speaker diarization, as attention-based models have unsuitable memory requirements for long-form audio, and traditional RNN capabilities are too limited. In this paper, we propose to assess the potential of Mamba for diarization by comparing the state-of-the-art neural segmentation of the pyannote pipeline with our proposed Mamba-based variant. Mamba's stronger processing capabilities allow usage of longer local windows, which significantly improve diarization quality by making the speaker embedding extraction more reliable. We find Mamba to be a superior alternative to both traditional RNN and the tested attention-based model. Our proposed Mamba-based system achieves state-of-the-art performance on three widely used diarization datasets.
Abstract:Extending the RNN Transducer (RNNT) to recognize multi-talker speech is essential for wider automatic speech recognition (ASR) applications. Multi-talker RNNT (MT-RNNT) aims to achieve recognition without relying on costly front-end source separation. MT-RNNT is conventionally implemented using architectures with multiple encoders or decoders, or by serializing all speakers' transcriptions into a single output stream. The first approach is computationally expensive, particularly due to the need for multiple encoder processing. In contrast, the second approach involves a complex label generation process, requiring accurate timestamps of all words spoken by all speakers in the mixture, obtained from an external ASR system. In this paper, we propose a novel alignment-free training scheme for the MT-RNNT (MT-RNNT-AFT) that adopts the standard RNNT architecture. The target labels are created by appending a prompt token corresponding to each speaker at the beginning of the transcription, reflecting the order of each speaker's appearance in the mixtures. Thus, MT-RNNT-AFT can be trained without relying on accurate alignments, and it can recognize all speakers' speech with just one round of encoder processing. Experiments show that MT-RNNT-AFT achieves performance comparable to that of the state-of-the-art alternatives, while greatly simplifying the training process.
Abstract:We present a distant automatic speech recognition (DASR) system developed for the CHiME-8 DASR track. It consists of a diarization first pipeline. For diarization, we use end-to-end diarization with vector clustering (EEND-VC) followed by target speaker voice activity detection (TS-VAD) refinement. To deal with various numbers of speakers, we developed a new multi-channel speaker counting approach. We then apply guided source separation (GSS) with several improvements to the baseline system. Finally, we perform ASR using a combination of systems built from strong pre-trained models. Our proposed system achieves a macro tcpWER of 21.3 % on the dev set, which is a 57 % relative improvement over the baseline.