Abstract:Self-supervised pretrained models exhibit competitive performance in automatic speech recognition on finetuning, even with limited in-domain supervised data for training. However, popular pretrained models are not suitable for streaming ASR because they are trained with full attention context. In this paper, we introduce XLSR-Transducer, where the XLSR-53 model is used as encoder in transducer setup. Our experiments on the AMI dataset reveal that the XLSR-Transducer achieves 4% absolute WER improvement over Whisper large-v2 and 8% over a Zipformer transducer model trained from scratch.To enable streaming capabilities, we investigate different attention masking patterns in the self-attention computation of transformer layers within the XLSR-53 model. We validate XLSR-Transducer on AMI and 5 languages from CommonVoice under low-resource scenarios. Finally, with the introduction of attention sinks, we reduce the left context by half while achieving a relative 12% improvement in WER.
Abstract:In traditional conversational intelligence from speech, a cascaded pipeline is used, involving tasks such as voice activity detection, diarization, transcription, and subsequent processing with different NLP models for tasks like semantic endpointing and named entity recognition (NER). Our paper introduces TokenVerse, a single Transducer-based model designed to handle multiple tasks. This is achieved by integrating task-specific tokens into the reference text during ASR model training, streamlining the inference and eliminating the need for separate NLP models. In addition to ASR, we conduct experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our experiments on a public and a private dataset show that the proposed method improves ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach in individual task performance. Additionally, we present task transfer learning to a new task within an existing TokenVerse.
Abstract:We propose a simple approach for weighting self-connecting edges in a Graph Convolutional Network (GCN) and show its impact on depression detection from transcribed clinical interviews. To this end, we use a GCN for modeling non-consecutive and long-distance semantics to classify the transcriptions into depressed or control subjects. The proposed method aims to mitigate the limiting assumptions of locality and the equal importance of self-connections vs. edges to neighboring nodes in GCNs, while preserving attractive features such as low computational cost, data agnostic, and interpretability capabilities. We perform an exhaustive evaluation in two benchmark datasets. Results show that our approach consistently outperforms the vanilla GCN model as well as previously reported results, achieving an F1=0.84% on both datasets. Finally, a qualitative analysis illustrates the interpretability capabilities of the proposed approach and its alignment with previous findings in psychology.
Abstract:GPU decoding significantly accelerates the output of ASR predictions. While GPUs are already being used for online ASR decoding, post-processing and rescoring on GPUs have not been properly investigated yet. Rescoring with available contextual information can considerably improve ASR predictions. Previous studies have proven the viability of lattice rescoring in decoding and biasing language model (LM) weights in offline and online CPU scenarios. In real-time GPU decoding, partial recognition hypotheses are produced without lattice generation, which makes the implementation of biasing more complex. The paper proposes and describes an approach to integrate contextual biasing in real-time GPU decoding while exploiting the standard Kaldi GPU decoder. Besides the biasing of partial ASR predictions, our approach also permits dynamic context switching allowing a flexible rescoring per each speech segment directly on GPU. The code is publicly released and tested with open-sourced test sets.
Abstract:Voice communication between air traffic controllers (ATCos) and pilots is critical for ensuring safe and efficient air traffic control (ATC). This task requires high levels of awareness from ATCos and can be tedious and error-prone. Recent attempts have been made to integrate artificial intelligence (AI) into ATC in order to reduce the workload of ATCos. However, the development of data-driven AI systems for ATC demands large-scale annotated datasets, which are currently lacking in the field. This paper explores the lessons learned from the ATCO2 project, a project that aimed to develop a unique platform to collect and preprocess large amounts of ATC data from airspace in real time. Audio and surveillance data were collected from publicly accessible radio frequency channels with VHF receivers owned by a community of volunteers and later uploaded to Opensky Network servers, which can be considered an "unlimited source" of data. In addition, this paper reviews previous work from ATCO2 partners, including (i) robust automatic speech recognition, (ii) natural language processing, (iii) English language identification of ATC communications, and (iv) the integration of surveillance data such as ADS-B. We believe that the pipeline developed during the ATCO2 project, along with the open-sourcing of its data, will encourage research in the ATC field. A sample of the ATCO2 corpus is available on the following website: https://www.atco2.org/data, while the full corpus can be purchased through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. We demonstrated that ATCO2 is an appropriate dataset to develop ASR engines when little or near to no ATC in-domain data is available. For instance, with the CNN-TDNNf kaldi model, we reached the performance of as low as 17.9% and 24.9% WER on public ATC datasets which is 6.6/7.6% better than "out-of-domain" but supervised CNN-TDNNf model.
Abstract:In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manually-generated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs allows SLU systems to improve in comparison to the 1-best setup (4% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, and a relative improvement of 18% over the 1-best configuration. Thus, crossmodal architectures represent a good alternative to overcome the limitations of working purely automatically generated textual data.
Abstract:A common problem for automatic speech recognition systems is how to recognize words that they did not see during training. Currently there is no established method of evaluating different techniques for tackling this problem. We propose using the CommonVoice dataset to create test sets for multiple languages which have a high out-of-vocabulary (OOV) ratio relative to a training set and release a new tool for calculating relevant performance metrics. We then evaluate, within the context of a hybrid ASR system, how much better subword models are at recognizing OOVs, and how much benefit one can get from incorporating OOV-word information into an existing system by modifying WFSTs. Additionally, we propose a new method for modifying a subword-based language model so as to better recognize OOV-words. We showcase very large improvements in OOV-word recognition and make both the data and code available.
Abstract:In this work, we investigate if the wav2vec 2.0 self-supervised pretraining helps mitigate the overfitting issues with connectionist temporal classification (CTC) training to reduce its performance gap with flat-start lattice-free MMI (E2E-LFMMI) for automatic speech recognition with limited training data. Towards that objective, we use the pretrained wav2vec 2.0 BASE model and fine-tune it on three different datasets including out-of-domain (Switchboard) and cross-lingual (Babel) scenarios. Our results show that for supervised adaptation of the wav2vec 2.0 model, both E2E-LFMMI and CTC achieve similar results; significantly outperforming the baselines trained only with supervised data. Fine-tuning the wav2vec 2.0 model with E2E-LFMMI and CTC we obtain the following relative WER improvements over the supervised baseline trained with E2E-LFMMI. We get relative improvements of 40% and 44% on the clean-set and 64% and 58% on the test set of Librispeech (100h) respectively. On Switchboard (300h) we obtain relative improvements of 33% and 35% respectively. Finally, for Babel languages, we obtain relative improvements of 26% and 23% on Swahili (38h) and 18% and 17% on Tagalog (84h) respectively.
Abstract:In this work, we propose lattice-free MMI (LFMMI) for supervised adaptation of self-supervised pretrained acoustic model. We pretrain a Transformer model on thousand hours of untranscribed Librispeech data followed by supervised adaptation with LFMMI on three different datasets. Our results show that fine-tuning with LFMMI, we consistently obtain relative WER improvements of 10% and 35.3% on the clean and other test sets of Librispeech (100h), 10.8% on Switchboard (300h), and 4.3% on Swahili (38h) and 4.4% on Tagalog (84h) compared to the baseline trained only with supervised data.
Abstract:Neural language modeling (LM) has led to significant improvements in several applications, including Automatic Speech Recognition. However, they typically require large amounts of training data, which is not available for many domains and languages. In this study, we propose a multilingual neural language model architecture, trained jointly on the domain-specific data of several low-resource languages. The proposed multilingual LM consists of language specific word embeddings in the encoder and decoder, and one language specific LSTM layer, plus two LSTM layers with shared parameters across the languages. This multilingual LM model facilitates transfer learning across the languages, acting as an extra regularizer in very low-resource scenarios. We integrate our proposed multilingual approach with a state-of-the-art highly-regularized neural LM, and evaluate on the conversational data domain for four languages over a range of training data sizes. Compared to monolingual LMs, the results show significant improvements of our proposed multilingual LM when the amount of available training data is limited, indicating the advantages of cross-lingual parameter sharing in very low-resource language modeling.