Topic:Image Paragraph Captioning
What is Image Paragraph Captioning? Image-paragraph captioning is the process of generating descriptive paragraphs for images that contain multiple objects or scenes.
Papers and Code
Oct 15, 2023
Abstract:Multimodal language generation, which leverages the synergy of language and vision, is a rapidly expanding field. However, existing vision-language models face challenges in tasks that require complex linguistic understanding. To address this issue, we introduce Visual-Language models as Importance Sampling weights (VLIS), a novel framework that combines the visual conditioning capability of vision-language models with the language understanding of unimodal text-only language models without further training. It extracts pointwise mutual information of each image and text from a visual-language model and uses the value as an importance sampling weight to adjust the token likelihood from a text-only model. VLIS improves vision-language models on diverse tasks, including commonsense understanding (WHOOPS, OK-VQA, and ScienceQA) and complex text generation (Concadia, Image Paragraph Captioning, and ROCStories). Our results suggest that VLIS represents a promising new direction for multimodal language generation.
Via

Jul 24, 2023
Abstract:Captioning images is a challenging scene-understanding task that connects computer vision and natural language processing. While image captioning models have been successful in producing excellent descriptions, the field has primarily focused on generating a single sentence for 2D images. This paper investigates whether integrating depth information with RGB images can enhance the captioning task and generate better descriptions. For this purpose, we propose a Transformer-based encoder-decoder framework for generating a multi-sentence description of a 3D scene. The RGB image and its corresponding depth map are provided as inputs to our framework, which combines them to produce a better understanding of the input scene. Depth maps could be ground truth or estimated, which makes our framework widely applicable to any RGB captioning dataset. We explored different fusion approaches to fuse RGB and depth images. The experiments are performed on the NYU-v2 dataset and the Stanford image paragraph captioning dataset. During our work with the NYU-v2 dataset, we found inconsistent labeling that prevents the benefit of using depth information to enhance the captioning task. The results were even worse than using RGB images only. As a result, we propose a cleaned version of the NYU-v2 dataset that is more consistent and informative. Our results on both datasets demonstrate that the proposed framework effectively benefits from depth information, whether it is ground truth or estimated, and generates better captions. Code, pre-trained models, and the cleaned version of the NYU-v2 dataset will be made publically available.
* 19 pages, 5 figures, 13 tables
Via

Nov 30, 2023
Abstract:Recently, the strong text creation ability of Large Language Models(LLMs) has given rise to many tools for assisting paper reading or even writing. However, the weak diagram analysis abilities of LLMs or Multimodal LLMs greatly limit their application scenarios, especially for scientific academic paper writing. In this work, towards a more versatile copilot for academic paper writing, we mainly focus on strengthening the multi-modal diagram analysis ability of Multimodal LLMs. By parsing Latex source files of high-quality papers, we carefully build a multi-modal diagram understanding dataset M-Paper. By aligning diagrams in the paper with related paragraphs, we construct professional diagram analysis samples for training and evaluation. M-Paper is the first dataset to support joint comprehension of multiple scientific diagrams, including figures and tables in the format of images or Latex codes. Besides, to better align the copilot with the user's intention, we introduce the `outline' as the control signal, which could be directly given by the user or revised based on auto-generated ones. Comprehensive experiments with a state-of-the-art Mumtimodal LLM demonstrate that training on our dataset shows stronger scientific diagram understanding performance, including diagram captioning, diagram analysis, and outline recommendation. The dataset, code, and model are available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/PaperOwl.
* 20 pages, 12 figures. arXiv admin note: text overlap with
arXiv:2305.15225 by other authors
Via

Jun 06, 2023
Abstract:In scholarly documents, figures provide a straightforward way of communicating scientific findings to readers. Automating figure caption generation helps move model understandings of scientific documents beyond text and will help authors write informative captions that facilitate communicating scientific findings. Unlike previous studies, we reframe scientific figure captioning as a knowledge-augmented image captioning task that models need to utilize knowledge embedded across modalities for caption generation. To this end, we extended the large-scale SciCap dataset~\cite{hsu-etal-2021-scicap-generating} to SciCap+ which includes mention-paragraphs (paragraphs mentioning figures) and OCR tokens. Then, we conduct experiments with the M4C-Captioner (a multimodal transformer-based model with a pointer network) as a baseline for our study. Our results indicate that mention-paragraphs serves as additional context knowledge, which significantly boosts the automatic standard image caption evaluation scores compared to the figure-only baselines. Human evaluations further reveal the challenges of generating figure captions that are informative to readers. The code and SciCap+ dataset will be publicly available at https://github.com/ZhishenYang/scientific_figure_captioning_dataset
* Published in SDU workshop at AAAI23
Via

Aug 21, 2023
Abstract:While current visual captioning models have achieved impressive performance, they often assume that the image is well-captured and provides a complete view of the scene. In real-world scenarios, however, a single image may not offer a good viewpoint, hindering fine-grained scene understanding. To overcome this limitation, we propose a novel task called Embodied Captioning, which equips visual captioning models with navigation capabilities, enabling them to actively explore the scene and reduce visual ambiguity from suboptimal viewpoints. Specifically, starting at a random viewpoint, an agent must navigate the environment to gather information from different viewpoints and generate a comprehensive paragraph describing all objects in the scene. To support this task, we build the ET-Cap dataset with Kubric simulator, consisting of 10K 3D scenes with cluttered objects and three annotated paragraphs per scene. We propose a Cascade Embodied Captioning model (CaBOT), which comprises of a navigator and a captioner, to tackle this task. The navigator predicts which actions to take in the environment, while the captioner generates a paragraph description based on the whole navigation trajectory. Extensive experiments demonstrate that our model outperforms other carefully designed baselines. Our dataset, codes and models are available at https://aim3-ruc.github.io/ExploreAndTell.
* 12 pages; 10 figures; ICCV 2023
Via

Jun 20, 2023
Abstract:Radiology report generation aims to automatically generate a clinically accurate and coherent paragraph from the X-ray image, which could relieve radiologists from the heavy burden of report writing. Although various image caption methods have shown remarkable performance in the natural image field, generating accurate reports for medical images requires knowledge of multiple modalities, including vision, language, and medical terminology. We propose a Knowledge-injected U-Transformer (KiUT) to learn multi-level visual representation and adaptively distill the information with contextual and clinical knowledge for word prediction. In detail, a U-connection schema between the encoder and decoder is designed to model interactions between different modalities. And a symptom graph and an injected knowledge distiller are developed to assist the report generation. Experimentally, we outperform state-of-the-art methods on two widely used benchmark datasets: IU-Xray and MIMIC-CXR. Further experimental results prove the advantages of our architecture and the complementary benefits of the injected knowledge.
Via

Jul 20, 2023
Abstract:Automated radiology report generation aims to generate radiology reports that contain rich, fine-grained descriptions of radiology imaging. Compared with image captioning in the natural image domain, medical images are very similar to each other, with only minor differences in the occurrence of diseases. Given the importance of these minor differences in the radiology report, it is crucial to encourage the model to focus more on the subtle regions of disease occurrence. Secondly, the problem of visual and textual data biases is serious. Not only do normal cases make up the majority of the dataset, but sentences describing areas with pathological changes also constitute only a small part of the paragraph. Lastly, generating medical image reports involves the challenge of long text generation, which requires more expertise and empirical training in medical knowledge. As a result, the difficulty of generating such reports is increased. To address these challenges, we propose a disease-oriented retrieval framework that utilizes similar reports as prior knowledge references. We design a factual consistency captioning generator to generate more accurate and factually consistent disease descriptions. Our framework can find most similar reports for a given disease from the CXR database by retrieving a disease-oriented mask consisting of the position and morphological characteristics. By referencing the disease-oriented similar report and the visual features, the factual consistency model can generate a more accurate radiology report.
* There are data writing errors in the paper
Via

Jun 15, 2023
Abstract:Due to the limited scale and quality of video-text training corpus, most vision-language foundation models employ image-text datasets for pretraining and primarily focus on modeling visually semantic representations while disregarding temporal semantic representations and correlations. To address this issue, we propose COSA, a COncatenated SAmple pretrained vision-language foundation model. COSA jointly models visual contents and event-level temporal cues using only image-text corpora. We achieve this by sequentially concatenating multiple image-text pairs as inputs for pretraining. This transformation effectively converts existing image-text corpora into a pseudo long-form video-paragraph corpus, enabling richer scene transformations and explicit event-description correspondence. Extensive experiments demonstrate that COSA consistently improves performance across a broad range of downstream tasks, including long-form/short-form video-text tasks and image-text tasks such as retrieval, captioning, and question answering. Notably, COSA achieves state-of-the-art results on various competitive benchmarks. Code and model are released at https://github.com/TXH-mercury/COSA.
Via

Jun 21, 2022
Abstract:Image paragraph captioning aims to describe a given image with a sequence of coherent sentences. Most existing methods model the coherence through the topic transition that dynamically infers a topic vector from preceding sentences. However, these methods still suffer from immediate or delayed repetitions in generated paragraphs because (i) the entanglement of syntax and semantics distracts the topic vector from attending pertinent visual regions; (ii) there are few constraints or rewards for learning long-range transitions. In this paper, we propose a bypass network that separately models semantics and linguistic syntax of preceding sentences. Specifically, the proposed model consists of two main modules, i.e. a topic transition module and a sentence generation module. The former takes previous semantic vectors as queries and applies attention mechanism on regional features to acquire the next topic vector, which reduces immediate repetition by eliminating linguistics. The latter decodes the topic vector and the preceding syntax state to produce the following sentence. To further reduce delayed repetition in generated paragraphs, we devise a replacement-based reward for the REINFORCE training. Comprehensive experiments on the widely used benchmark demonstrate the superiority of the proposed model over the state of the art for coherence while maintaining high accuracy.
* Under consideration at Computer Vision and Image Understanding
Via

Jun 03, 2022
Abstract:People say, "A picture is worth a thousand words". Then how can we get the rich information out of the image? We argue that by using visual clues to bridge large pretrained vision foundation models and language models, we can do so without any extra cross-modal training. Thanks to the strong zero-shot capability of foundation models, we start by constructing a rich semantic representation of the image (e.g., image tags, object attributes / locations, captions) as a structured textual prompt, called visual clues, using a vision foundation model. Based on visual clues, we use large language model to produce a series of comprehensive descriptions for the visual content, which is then verified by the vision model again to select the candidate that aligns best with the image. We evaluate the quality of generated descriptions by quantitative and qualitative measurement. The results demonstrate the effectiveness of such a structured semantic representation.
Via
