Composed image retrieval is a type of image retrieval task where the user provides a reference image as a starting point and specifies a text on how to shift from the starting point to the desired target image. However, most existing methods focus on the composition learning of text and reference images and oversimplify the text as a description, neglecting the inherent structure and the user's shifting intention of the texts. As a result, these methods typically take shortcuts that disregard the visual cue of the reference images. To address this issue, we reconsider the text as instructions and propose a Semantic Shift network (SSN) that explicitly decomposes the semantic shifts into two steps: from the reference image to the visual prototype and from the visual prototype to the target image. Specifically, SSN explicitly decomposes the instructions into two components: degradation and upgradation, where the degradation is used to picture the visual prototype from the reference image, while the upgradation is used to enrich the visual prototype into the final representations to retrieve the desired target image. The experimental results show that the proposed SSN demonstrates a significant improvement of 5.42% and 1.37% on the CIRR and FashionIQ datasets, respectively, and establishes a new state-of-the-art performance. Codes will be publicly available.
A 360-degree (omni-directional) image provides an all-encompassing spherical view of a scene. Recently, there has been an increasing interest in synthesising 360-degree images from conventional narrow field of view (NFoV) images captured by digital cameras and smartphones, for providing immersive experiences in various scenarios such as virtual reality. Yet, existing methods typically fall short in synthesizing intricate visual details or ensure the generated images align consistently with user-provided prompts. In this study, autoregressive omni-aware generative network (AOG-Net) is proposed for 360-degree image generation by out-painting an incomplete 360-degree image progressively with NFoV and text guidances joinly or individually. This autoregressive scheme not only allows for deriving finer-grained and text-consistent patterns by dynamically generating and adjusting the process but also offers users greater flexibility to edit their conditions throughout the generation process. A global-local conditioning mechanism is devised to comprehensively formulate the outpainting guidance in each autoregressive step. Text guidances, omni-visual cues, NFoV inputs and omni-geometry are encoded and further formulated with cross-attention based transformers into a global stream and a local stream into a conditioned generative backbone model. As AOG-Net is compatible to leverage large-scale models for the conditional encoder and the generative prior, it enables the generation to use extensive open-vocabulary text guidances. Comprehensive experiments on two commonly used 360-degree image datasets for both indoor and outdoor settings demonstrate the state-of-the-art performance of our proposed method. Our code will be made publicly available.
In this work, we address the task of few-shot part segmentation, which aims to segment the different parts of an unseen object using very few labeled examples. It is found that leveraging the textual space of a powerful pre-trained image-language model (such as CLIP) can be beneficial in learning visual features. Therefore, we develop a novel method termed PartSeg for few-shot part segmentation based on multimodal learning. Specifically, we design a part-aware prompt learning method to generate part-specific prompts that enable the CLIP model to better understand the concept of ``part'' and fully utilize its textual space. Furthermore, since the concept of the same part under different object categories is general, we establish relationships between these parts during the prompt learning process. We conduct extensive experiments on the PartImageNet and Pascal$\_$Part datasets, and the experimental results demonstrated that our proposed method achieves state-of-the-art performance.
In recent years, cross-modal domain adaptation has been studied on the paired 2D image and 3D LiDAR data to ease the labeling costs for 3D LiDAR semantic segmentation (3DLSS) in the target domain. However, in such a setting the paired 2D and 3D data in the source domain are still collected with additional effort. Since the 2D-3D projections can enable the 3D model to learn semantic information from the 2D counterpart, we ask whether we could further remove the need of source 3D data and only rely on the source 2D images. To answer it, this paper studies a new 3DLSS setting where a 2D dataset (source) with semantic annotations and a paired but unannotated 2D image and 3D LiDAR data (target) are available. To achieve 3DLSS in this scenario, we propose Cross-Modal and Cross-Domain Learning (CoMoDaL). Specifically, our CoMoDaL aims at modeling 1) inter-modal cross-domain distillation between the unpaired source 2D image and target 3D LiDAR data, and 2) the intra-domain cross-modal guidance between the target 2D image and 3D LiDAR data pair. In CoMoDaL, we propose to apply several constraints, such as point-to-pixel and prototype-to-pixel alignments, to associate the semantics in different modalities and domains by constructing mixed samples in two modalities. The experimental results on several datasets show that in the proposed setting, the developed CoMoDaL can achieve segmentation without the supervision of labeled LiDAR data. Ablations are also conducted to provide more analysis. Code will be available publicly.
Text-conditional diffusion models are able to generate high-fidelity images with diverse contents. However, linguistic representations frequently exhibit ambiguous descriptions of the envisioned objective imagery, requiring the incorporation of additional control signals to bolster the efficacy of text-guided diffusion models. In this work, we propose Cocktail, a pipeline to mix various modalities into one embedding, amalgamated with a generalized ControlNet (gControlNet), a controllable normalisation (ControlNorm), and a spatial guidance sampling method, to actualize multi-modal and spatially-refined control for text-conditional diffusion models. Specifically, we introduce a hyper-network gControlNet, dedicated to the alignment and infusion of the control signals from disparate modalities into the pre-trained diffusion model. gControlNet is capable of accepting flexible modality signals, encompassing the simultaneous reception of any combination of modality signals, or the supplementary fusion of multiple modality signals. The control signals are then fused and injected into the backbone model according to our proposed ControlNorm. Furthermore, our advanced spatial guidance sampling methodology proficiently incorporates the control signal into the designated region, thereby circumventing the manifestation of undesired objects within the generated image. We demonstrate the results of our method in controlling various modalities, proving high-quality synthesis and fidelity to multiple external signals.
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning. Existing methods often rely on empirical label selection strategies, such as confidence thresholding, to generate beneficial pseudo-labels for model training. This approach may, however, hinder the comprehensive exploitation of unlabeled data points. We hypothesize that this selective usage arises from the noise in pseudo-labels generated on unlabeled data. The noise in pseudo-labels may result in significant discrepancies between pseudo-labels and model predictions, thus confusing and affecting the model training greatly. To address this issue, we propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions. More specifically, our method introduces an Entropy Regularization loss and a Distribution Alignment loss for weakly supervised learning in 3D segmentation tasks, resulting in an ERDA learning strategy. Interestingly, by using KL distance to formulate the distribution alignment loss, it reduces to a deceptively simple cross-entropy-based loss which optimizes both the pseudo-label generation network and the 3D segmentation network simultaneously. Despite the simplicity, our method promisingly improves the performance. We validate the effectiveness through extensive experiments on various baselines and large-scale datasets. Results show that ERDA effectively enables the effective usage of all unlabeled data points for learning and achieves state-of-the-art performance under different settings. Remarkably, our method can outperform fully-supervised baselines using only 1% of true annotations. Code and model will be made publicly available.
Classifier-free guidance is an effective sampling technique in diffusion models that has been widely adopted. The main idea is to extrapolate the model in the direction of text guidance and away from null-text guidance. In this paper, we demonstrate that null-text guidance in diffusion models is secretly a cartoon-style creator, i.e., the generated images can be efficiently transformed into cartoons by simply perturbing the null-text guidance. Specifically, we proposed two disturbance methods, i.e., Rollback disturbance (Back-D) and Image disturbance (Image-D), to construct misalignment between the noisy images used for predicting null-text guidance and text guidance (subsequently referred to as \textbf{null-text noisy image} and \textbf{text noisy image} respectively) in the sampling process. Back-D achieves cartoonization by altering the noise level of null-text noisy image via replacing $x_t$ with $x_{t+\Delta t}$. Image-D, alternatively, produces high-fidelity, diverse cartoons by defining $x_t$ as a clean input image, which further improves the incorporation of finer image details. Through comprehensive experiments, we delved into the principle of noise disturbing for null-text and uncovered that the efficacy of disturbance depends on the correlation between the null-text noisy image and the source image. Moreover, our proposed techniques, which can generate cartoon images and cartoonize specific ones, are training-free and easily integrated as a plug-and-play component in any classifier-free guided diffusion model. Project page is available at \url{https://nulltextforcartoon.github.io/}.
Existing multimodal conditional image synthesis (MCIS) methods generate images conditioned on any combinations of various modalities that require all of them must be exactly conformed, hindering the synthesis controllability and leaving the potential of cross-modality under-exploited. To this end, we propose to generate images conditioned on the compositions of multimodal control signals, where modalities are imperfectly complementary, i.e., composed multimodal conditional image synthesis (CMCIS). Specifically, we observe two challenging issues of the proposed CMCIS task, i.e., the modality coordination problem and the modality imbalance problem. To tackle these issues, we introduce a Mixture-of-Modality-Tokens Transformer (MMoT) that adaptively fuses fine-grained multimodal control signals, a multimodal balanced training loss to stabilize the optimization of each modality, and a multimodal sampling guidance to balance the strength of each modality control signal. Comprehensive experimental results demonstrate that MMoT achieves superior performance on both unimodal conditional image synthesis (UCIS) and MCIS tasks with high-quality and faithful image synthesis on complex multimodal conditions. The project website is available at https://jabir-zheng.github.io/MMoT.
The advent of open-source AI communities has produced a cornucopia of powerful text-guided diffusion models that are trained on various datasets. While few explorations have been conducted on ensembling such models to combine their strengths. In this work, we propose a simple yet effective method called Saliency-aware Noise Blending (SNB) that can empower the fused text-guided diffusion models to achieve more controllable generation. Specifically, we experimentally find that the responses of classifier-free guidance are highly related to the saliency of generated images. Thus we propose to trust different models in their areas of expertise by blending the predicted noises of two diffusion models in a saliency-aware manner. SNB is training-free and can be completed within a DDIM sampling process. Additionally, it can automatically align the semantics of two noise spaces without requiring additional annotations such as masks. Extensive experiments show the impressive effectiveness of SNB in various applications. Project page is available at https://magicfusion.github.io/.
Vision-and-language navigation (VLN) simulates a visual agent that follows natural-language navigation instructions in real-world scenes. Existing approaches have made enormous progress in navigation in new environments, such as beam search, pre-exploration, and dynamic or hierarchical history encoding. To balance generalization and efficiency, we resort to memorizing visited scenarios apart from the ongoing route while navigating. In this work, we introduce a mechanism of Episodic Scene memory (ESceme) for VLN that wakes an agent's memories of past visits when it enters the current scene. The episodic scene memory allows the agent to envision a bigger picture of the next prediction. This way, the agent learns to utilize dynamically updated information instead of merely adapting to static observations. We provide a simple yet effective implementation of ESceme by enhancing the accessible views at each location and progressively completing the memory while navigating. We verify the superiority of ESceme on short-horizon (R2R), long-horizon (R4R), and vision-and-dialog (CVDN) VLN tasks. Our ESceme also wins first place on the CVDN leaderboard. Code is available: \url{https://github.com/qizhust/esceme}.}