Topic:Few Shot Object Detection
What is Few Shot Object Detection? Few-shot object detection is a computer-vision task that involves detecting objects in images with limited training data. The goal is to train a model on a few examples of each object class and then use the model to detect objects in new images.
Papers and Code
Sep 16, 2025
Abstract:Cross-view object geo-localization (CVOGL) aims to determine the location of a specific object in high-resolution satellite imagery given a query image with a point prompt. Existing approaches treat CVOGL as a one-shot detection task, directly regressing object locations from cross-view information aggregation, but they are vulnerable to feature noise and lack mechanisms for error correction. In this paper, we propose ReCOT, a Recurrent Cross-view Object geo-localization Transformer, which reformulates CVOGL as a recurrent localization task. ReCOT introduces a set of learnable tokens that encode task-specific intent from the query image and prompt embeddings, and iteratively attend to the reference features to refine the predicted location. To enhance this recurrent process, we incorporate two complementary modules: (1) a SAM-based knowledge distillation strategy that transfers segmentation priors from the Segment Anything Model (SAM) to provide clearer semantic guidance without additional inference cost, and (2) a Reference Feature Enhancement Module (RFEM) that introduces a hierarchical attention to emphasize object-relevant regions in the reference features. Extensive experiments on standard CVOGL benchmarks demonstrate that ReCOT achieves state-of-the-art (SOTA) performance while reducing parameters by 60% compared to previous SOTA approaches.
Via

Sep 04, 2025
Abstract:Grasping assistance is essential for restoring autonomy in individuals with motor impairments, particularly in unstructured environments where object categories and user intentions are diverse and unpredictable. We present OVGrasp, a hierarchical control framework for soft exoskeleton-based grasp assistance that integrates RGB-D vision, open-vocabulary prompts, and voice commands to enable robust multimodal interaction. To enhance generalization in open environments, OVGrasp incorporates a vision-language foundation model with an open-vocabulary mechanism, allowing zero-shot detection of previously unseen objects without retraining. A multimodal decision-maker further fuses spatial and linguistic cues to infer user intent, such as grasp or release, in multi-object scenarios. We deploy the complete framework on a custom egocentric-view wearable exoskeleton and conduct systematic evaluations on 15 objects across three grasp types. Experimental results with ten participants demonstrate that OVGrasp achieves a grasping ability score (GAS) of 87.00%, outperforming state-of-the-art baselines and achieving improved kinematic alignment with natural hand motion.
Via

Sep 05, 2025
Abstract:Timely and accurate floodwater depth estimation is critical for road accessibility and emergency response. While recent computer vision methods have enabled flood detection, they suffer from both accuracy limitations and poor generalization due to dependence on fixed object detectors and task-specific training. To enable accurate depth estimation that can generalize across diverse flood scenarios, this paper presents FloodVision, a zero-shot framework that combines the semantic reasoning abilities of the foundation vision-language model GPT-4o with a structured domain knowledge graph. The knowledge graph encodes canonical real-world dimensions for common urban objects including vehicles, people, and infrastructure elements to ground the model's reasoning in physical reality. FloodVision dynamically identifies visible reference objects in RGB images, retrieves verified heights from the knowledge graph to mitigate hallucination, estimates submergence ratios, and applies statistical outlier filtering to compute final depth values. Evaluated on 110 crowdsourced images from MyCoast New York, FloodVision achieves a mean absolute error of 8.17 cm, reducing the GPT-4o baseline 10.28 cm by 20.5% and surpassing prior CNN-based methods. The system generalizes well across varying scenes and operates in near real-time, making it suitable for future integration into digital twin platforms and citizen-reporting apps for smart city flood resilience.
Via

Sep 03, 2025
Abstract:In this paper, we aim to transfer CLIP's robust 2D generalization capabilities to identify 3D anomalies across unseen objects of highly diverse class semantics. To this end, we propose a unified framework to comprehensively detect and segment 3D anomalies by leveraging both point- and pixel-level information. We first design PointAD, which leverages point-pixel correspondence to represent 3D anomalies through their associated rendering pixel representations. This approach is referred to as implicit 3D representation, as it focuses solely on rendering pixel anomalies but neglects the inherent spatial relationships within point clouds. Then, we propose PointAD+ to further broaden the interpretation of 3D anomalies by introducing explicit 3D representation, emphasizing spatial abnormality to uncover abnormal spatial relationships. Hence, we propose G-aggregation to involve geometry information to enable the aggregated point representations spatially aware. To simultaneously capture rendering and spatial abnormality, PointAD+ proposes hierarchical representation learning, incorporating implicit and explicit anomaly semantics into hierarchical text prompts: rendering prompts for the rendering layer and geometry prompts for the geometry layer. A cross-hierarchy contrastive alignment is further introduced to promote the interaction between the rendering and geometry layers, facilitating mutual anomaly learning. Finally, PointAD+ integrates anomaly semantics from both layers to capture the generalized anomaly semantics. During the test, PointAD+ can integrate RGB information in a plug-and-play manner and further improve its detection performance. Extensive experiments demonstrate the superiority of PointAD+ in ZS 3D anomaly detection across unseen objects with highly diverse class semantics, achieving a holistic understanding of abnormality.
* Submitted to TPAMI
Via

Sep 04, 2025
Abstract:AI models rely on annotated data to learn pattern and perform prediction. Annotation is usually a labor-intensive step that require associating labels ranging from a simple classification label to more complex tasks such as object detection, oriented bounding box estimation, and instance segmentation. Traditional tools often require extensive manual input, limiting scalability for large datasets. To address this, we introduce VisioFirm, an open-source web application designed to streamline image labeling through AI-assisted automation. VisioFirm integrates state-of-the-art foundation models into an interface with a filtering pipeline to reduce human-in-the-loop efforts. This hybrid approach employs CLIP combined with pre-trained detectors like Ultralytics models for common classes and zero-shot models such as Grounding DINO for custom labels, generating initial annotations with low-confidence thresholding to maximize recall. Through this framework, when tested on COCO-type of classes, initial prediction have been proven to be mostly correct though the users can refine these via interactive tools supporting bounding boxes, oriented bounding boxes, and polygons. Additionally, VisioFirm has on-the-fly segmentation powered by Segment Anything accelerated through WebGPU for browser-side efficiency. The tool supports multiple export formats (YOLO, COCO, Pascal VOC, CSV) and operates offline after model caching, enhancing accessibility. VisioFirm demonstrates up to 90\% reduction in manual effort through benchmarks on diverse datasets, while maintaining high annotation accuracy via clustering of connected CLIP-based disambiguate components and IoU-graph for redundant detection suppression. VisioFirm can be accessed from \href{https://github.com/OschAI/VisioFirm}{https://github.com/OschAI/VisioFirm}.
Via

Aug 29, 2025
Abstract:Effectively understanding urban scenes requires fine-grained spatial reasoning about objects, layouts, and depth cues. However, how well current vision-language models (VLMs), pretrained on general scenes, transfer these abilities to urban domain remains underexplored. To address this gap, we conduct a comparative study of three off-the-shelf VLMs-BLIP-2, InstructBLIP, and LLaVA-1.5-evaluating both zero-shot performance and the effects of fine-tuning with a synthetic VQA dataset specific to urban scenes. We construct such dataset from segmentation, depth, and object detection predictions of street-view images, pairing each question with LLM-generated Chain-of-Thought (CoT) answers for step-by-step reasoning supervision. Results show that while VLMs perform reasonably well in zero-shot settings, fine-tuning with our synthetic CoT-supervised dataset substantially boosts performance, especially for challenging question types such as negation and counterfactuals. This study introduces urban spatial reasoning as a new challenge for VLMs and demonstrates synthetic dataset construction as a practical path for adapting general-purpose models to specialized domains.
* Accepted to ICCV Workshop 2025
Via

Aug 25, 2025
Abstract:We address the problem of few-shot pattern detection, which aims to detect all instances of a given pattern, typically represented by a few exemplars, from an input image. Although similar problems have been studied in few-shot object counting and detection (FSCD), previous methods and their benchmarks have narrowed patterns of interest to object categories and often fail to localize non-object patterns. In this work, we propose a simple yet effective detector based on template matching and regression, dubbed TMR. While previous FSCD methods typically represent target exemplars as spatially collapsed prototypes and lose structural information, we revisit classic template matching and regression. It effectively preserves and leverages the spatial layout of exemplars through a minimalistic structure with a small number of learnable convolutional or projection layers on top of a frozen backbone We also introduce a new dataset, dubbed RPINE, which covers a wider range of patterns than existing object-centric datasets. Our method outperforms the state-of-the-art methods on the three benchmarks, RPINE, FSCD-147, and FSCD-LVIS, and demonstrates strong generalization in cross-dataset evaluation.
* Accepted to ICCV 2025 (highlight)
Via

Aug 26, 2025
Abstract:Effective waste sorting is critical for sustainable recycling, yet AI research in this domain continues to lag behind commercial systems due to limited datasets and reliance on legacy object detectors. In this work, we advance AI-driven waste detection by establishing strong baselines and introducing an ensemble-based semi-supervised learning framework. We first benchmark state-of-the-art Open-Vocabulary Object Detection (OVOD) models on the real-world ZeroWaste dataset, demonstrating that while class-only prompts perform poorly, LLM-optimized prompts significantly enhance zero-shot accuracy. Next, to address domain-specific limitations, we fine-tune modern transformer-based detectors, achieving a new baseline of 51.6 mAP. We then propose a soft pseudo-labeling strategy that fuses ensemble predictions using spatial and consensus-aware weighting, enabling robust semi-supervised training. Applied to the unlabeled ZeroWaste-s subset, our pseudo-annotations achieve performance gains that surpass fully supervised training, underscoring the effectiveness of scalable annotation pipelines. Our work contributes to the research community by establishing rigorous baselines, introducing a robust ensemble-based pseudo-labeling pipeline, generating high-quality annotations for the unlabeled ZeroWaste-s subset, and systematically evaluating OVOD models under real-world waste sorting conditions. Our code is available at: https://github.com/h-abid97/robust-waste-detection.
* Accepted to BMVC 2025
Via

Aug 27, 2025
Abstract:Gas leaks pose serious threats to human health and contribute significantly to atmospheric pollution, drawing increasing public concern. However, the lack of effective detection methods hampers timely and accurate identification of gas leaks. While some vision-based techniques leverage infrared videos for leak detection, the blurry and non-rigid nature of gas clouds often limits their effectiveness. To address these challenges, we propose a novel framework called Joint Vision-Language Gas leak Segmentation (JVLGS), which integrates the complementary strengths of visual and textual modalities to enhance gas leak representation and segmentation. Recognizing that gas leaks are sporadic and many video frames may contain no leak at all, our method incorporates a post-processing step to reduce false positives caused by noise and non-target objects, an issue that affects many existing approaches. Extensive experiments conducted across diverse scenarios show that JVLGS significantly outperforms state-of-the-art gas leak segmentation methods. We evaluate our model under both supervised and few-shot learning settings, and it consistently achieves strong performance in both, whereas competing methods tend to perform well in only one setting or poorly in both. Code available at: https://github.com/GeekEagle/JVLGS
* 19 pages, 13 figures
Via

Aug 25, 2025
Abstract:The urgent need for renewable energy expansion, particularly wind power, is hindered by conflicts with wildlife conservation. To address this, we developed BirdRecorder, an advanced AI-based anti-collision system to protect endangered birds, especially the red kite (Milvus milvus). Integrating robotics, telemetry, and high-performance AI algorithms, BirdRecorder aims to detect, track, and classify avian species within a range of 800 m to minimize bird-turbine collisions. BirdRecorder integrates advanced AI methods with optimized hardware and software architectures to enable real-time image processing. Leveraging Single Shot Detector (SSD) for detection, combined with specialized hardware acceleration and tracking algorithms, our system achieves high detection precision while maintaining the speed necessary for real-time decision-making. By combining these components, BirdRecorder outperforms existing approaches in both accuracy and efficiency. In this paper, we summarize results on field tests and performance of the BirdRecorder system. By bridging the gap between renewable energy expansion and wildlife conservation, BirdRecorder contributes to a more sustainable coexistence of technology and nature.
* 18 pages, 1 figures, to appear in Proceedings of the 19th
International Conference on Intelligent Autonomous Systems (IAS-19), Genoa,
Italy, 2025
Via
