Topic:Fake News Detection
What is Fake News Detection? Fake news detection is a natural language processing task that involves identifying and classifying news articles or other types of text as real or fake. The goal of fake news detection is to develop algorithms that can automatically identify and flag fake news articles, which can be used to combat misinformation and promote the dissemination of accurate information.
Papers and Code
Jun 25, 2025
Abstract:The rapid advancement of generative artificial intelligence is producing fake remote sensing imagery (RSI) that is increasingly difficult to detect, potentially leading to erroneous intelligence, fake news, and even conspiracy theories. Existing forgery detection methods typically rely on single visual features to capture predefined artifacts, such as spatial-domain cues to detect forged objects like roads or buildings in RSI, or frequency-domain features to identify artifacts from up-sampling operations in adversarial generative networks (GANs). However, the nature of artifacts can significantly differ depending on geographic terrain, land cover types, or specific features within the RSI. Moreover, these complex artifacts evolve as generative models become more sophisticated. In short, over-reliance on a single visual cue makes existing forgery detectors struggle to generalize across diverse remote sensing data. This paper proposed a novel forgery detection framework called SFNet, designed to identify fake images in diverse remote sensing data by leveraging spatial and frequency domain features. Specifically, to obtain rich and comprehensive visual information, SFNet employs two independent feature extractors to capture spatial and frequency domain features from input RSIs. To fully utilize the complementary domain features, the domain feature mapping module and the hybrid domain feature refinement module(CBAM attention) of SFNet are designed to successively align and fuse the multi-domain features while suppressing redundant information. Experiments on three datasets show that SFNet achieves an accuracy improvement of 4%-15.18% over the state-of-the-art RS forgery detection methods and exhibits robust generalization capabilities. The code is available at https://github.com/GeoX-Lab/RSTI/tree/main/SFNet.
Via

Jun 07, 2025
Abstract:Disinformation detection is a key aspect of media literacy. Psychological studies have shown that knowledge of persuasive fallacies helps individuals detect disinformation. Inspired by these findings, we experimented with large language models (LLMs) to test whether infusing persuasion knowledge enhances disinformation detection. As a result, we introduce the Persuasion-Augmented Chain of Thought (PCoT), a novel approach that leverages persuasion to improve disinformation detection in zero-shot classification. We extensively evaluate PCoT on online news and social media posts. Moreover, we publish two novel, up-to-date disinformation datasets: EUDisinfo and MultiDis. These datasets enable the evaluation of PCoT on content entirely unseen by the LLMs used in our experiments, as the content was published after the models' knowledge cutoffs. We show that, on average, PCoT outperforms competitive methods by 15% across five LLMs and five datasets. These findings highlight the value of persuasion in strengthening zero-shot disinformation detection.
* Accepted to ACL 2025 Main Conference
Via

Jun 05, 2025
Abstract:The widespread dissemination of fake news on social media has significantly impacted society, resulting in serious consequences. Conventional deep learning methodologies employing small language models (SLMs) suffer from extensive supervised training requirements and difficulties adapting to evolving news environments due to data scarcity and distribution shifts. Large language models (LLMs), despite robust zero-shot capabilities, fall short in accurately detecting fake news owing to outdated knowledge and the absence of suitable demonstrations. In this paper, we propose a novel Continuous Collaborative Emergent Fake News Detection (C$^2$EFND) framework to address these challenges. The C$^2$EFND framework strategically leverages both LLMs' generalization power and SLMs' classification expertise via a multi-round collaborative learning framework. We further introduce a lifelong knowledge editing module based on a Mixture-of-Experts architecture to incrementally update LLMs and a replay-based continue learning method to ensure SLMs retain prior knowledge without retraining entirely. Extensive experiments on Pheme and Twitter16 datasets demonstrate that C$^2$EFND significantly outperforms existed methods, effectively improving detection accuracy and adaptability in continuous emergent fake news scenarios.
Via

Jun 06, 2025
Abstract:To tackle the threat of fake news, the task of detecting and grounding multi-modal media manipulation DGM4 has received increasing attention. However, most state-of-the-art methods fail to explore the fine-grained consistency within local content, usually resulting in an inadequate perception of detailed forgery and unreliable results. In this paper, we propose a novel approach named Contextual-Semantic Consistency Learning (CSCL) to enhance the fine-grained perception ability of forgery for DGM4. Two branches for image and text modalities are established, each of which contains two cascaded decoders, i.e., Contextual Consistency Decoder (CCD) and Semantic Consistency Decoder (SCD), to capture within-modality contextual consistency and across-modality semantic consistency, respectively. Both CCD and SCD adhere to the same criteria for capturing fine-grained forgery details. To be specific, each module first constructs consistency features by leveraging additional supervision from the heterogeneous information of each token pair. Then, the forgery-aware reasoning or aggregating is adopted to deeply seek forgery cues based on the consistency features. Extensive experiments on DGM4 datasets prove that CSCL achieves new state-of-the-art performance, especially for the results of grounding manipulated content. Codes and weights are avaliable at https://github.com/liyih/CSCL.
* Accepted by CVPR 2025
Via

May 24, 2025
Abstract:Bangla or Bengali is the national language of Bangladesh, people from different regions don't talk in proper Bangla. Every division of Bangladesh has its own local language like Sylheti, Chittagong etc. In recent years some papers were published on Bangla language like sentiment analysis, fake news detection and classifications, but a few of them were on Bangla languages. This research is for the local language and this particular paper is on Sylheti language. It presented a comprehensive system using Natural Language Processing or NLP techniques for translating Pure or Modern Bangla to locally spoken Sylheti Bangla language. Total 1200 data used for training 3 models LSTM, Bi-LSTM and Seq2Seq and LSTM scored the best in performance with 89.3% accuracy. The findings of this research may contribute to the growth of Bangla NLP researchers for future more advanced innovations.
* 2024 15th Int. Conf. on Computing Communication and Networking
Technologies (ICCCNT), Kamand, India, pp. 1-7, 2024
* 2024 15th International Conference on Computing Communication and
Networking Technologies (ICCCNT)
Via

May 25, 2025
Abstract:Real-world medical data often includes measurements from multiple signals that are collected at irregular and asynchronous time intervals. For example, different types of blood tests can be measured at different times and frequencies, resulting in fragmented and unevenly scattered temporal data. Similar issues of irregular sampling of different attributes occur in other domains, such as monitoring of large systems using event log files or the spread of fake news on social networks. Effectively learning from such data requires models that can handle sets of temporally sparse and heterogeneous signals. In this paper, we propose Graph Mixing Additive Networks (GMAN), a novel and interpretable-by-design model for learning over irregular sets of temporal signals. Our method achieves state-of-the-art performance in real-world medical tasks, including a 4-point increase in the AUROC score of in-hospital mortality prediction, compared to existing methods. We further showcase GMAN's flexibility by applying it to a fake news detection task. We demonstrate how its interpretability capabilities, including node-level, graph-level, and subset-level importance, allow for transition phases detection and gaining medical insights with real-world high-stakes implications. Finally, we provide theoretical insights on GMAN expressive power.
Via

May 11, 2025
Abstract:Multimodal news contains a wealth of information and is easily affected by deepfake modeling attacks. To combat the latest image and text generation methods, we present a new Multimodal Fake News Detection dataset (MFND) containing 11 manipulated types, designed to detect and localize highly authentic fake news. Furthermore, we propose a Shallow-Deep Multitask Learning (SDML) model for fake news, which fully uses unimodal and mutual modal features to mine the intrinsic semantics of news. Under shallow inference, we propose the momentum distillation-based light punishment contrastive learning for fine-grained uniform spatial image and text semantic alignment, and an adaptive cross-modal fusion module to enhance mutual modal features. Under deep inference, we design a two-branch framework to augment the image and text unimodal features, respectively merging with mutual modalities features, for four predictions via dedicated detection and localization projections. Experiments on both mainstream and our proposed datasets demonstrate the superiority of the model. Codes and dataset are released at https://github.com/yunan-wang33/sdml.
* Accepted by IJCAI 2025
Via

May 13, 2025
Abstract:In today's digital environment, the rapid propagation of fake news via social networks poses significant social challenges. Most existing detection methods either employ traditional classification models, which suffer from low interpretability and limited generalization capabilities, or craft specific prompts for large language models (LLMs) to produce explanations and results directly, failing to leverage LLMs' reasoning abilities fully. Inspired by the saying that "truth becomes clearer through debate," our study introduces a novel multi-agent system with LLMs named TruEDebate (TED) to enhance the interpretability and effectiveness of fake news detection. TED employs a rigorous debate process inspired by formal debate settings. Central to our approach are two innovative components: the DebateFlow Agents and the InsightFlow Agents. The DebateFlow Agents organize agents into two teams, where one supports and the other challenges the truth of the news. These agents engage in opening statements, cross-examination, rebuttal, and closing statements, simulating a rigorous debate process akin to human discourse analysis, allowing for a thorough evaluation of news content. Concurrently, the InsightFlow Agents consist of two specialized sub-agents: the Synthesis Agent and the Analysis Agent. The Synthesis Agent summarizes the debates and provides an overarching viewpoint, ensuring a coherent and comprehensive evaluation. The Analysis Agent, which includes a role-aware encoder and a debate graph, integrates role embeddings and models the interactions between debate roles and arguments using an attention mechanism, providing the final judgment.
* SIGIR 2025
Via

May 15, 2025
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in generating text that closely resembles human writing across a wide range of styles and genres. However, such capabilities are prone to potential misuse, such as fake news generation, spam email creation, and misuse in academic assignments. As a result, accurate detection of AI-generated text and identification of the model that generated it are crucial for maintaining the responsible use of LLMs. In this work, we addressed two sub-tasks put forward by the Defactify workshop under AI-Generated Text Detection shared task at the Association for the Advancement of Artificial Intelligence (AAAI 2025): Task A involved distinguishing between human-authored or AI-generated text, while Task B focused on attributing text to its originating language model. For each task, we proposed two neural architectures: an optimized model and a simpler variant. For Task A, the optimized neural architecture achieved fifth place with $F1$ score of 0.994, and for Task B, the simpler neural architecture also ranked fifth place with $F1$ score of 0.627.
Via

Apr 30, 2025
Abstract:This paper focuses to detect the fake news on the short video platforms. While significant research efforts have been devoted to this task with notable progress in recent years, current detection accuracy remains suboptimal due to the rapid evolution of content manipulation and generation technologies. Existing approaches typically employ a cross-modal fusion strategy that directly combines raw video data with metadata inputs before applying a classification layer. However, our empirical observations reveal a critical oversight: manipulated content frequently exhibits inter-modal inconsistencies that could serve as valuable discriminative features, yet remain underutilized in contemporary detection frameworks. Motivated by this insight, we propose a novel detection paradigm that explicitly identifies and leverages cross-modal contradictions as discriminative cues. Our approach consists of two core modules: Cross-modal Consistency Learning (CMCL) and Multi-modal Collaborative Diagnosis (MMCD). CMCL includes Pseudo-label Generation (PLG) and Cross-modal Consistency Diagnosis (CMCD). In PLG, a Multimodal Large Language Model is used to generate pseudo-labels for evaluating cross-modal semantic consistency. Then, CMCD extracts [CLS] tokens and computes cosine loss to quantify cross-modal inconsistencies. MMCD further integrates multimodal features through Multimodal Feature Fusion (MFF) and Probability Scores Fusion (PSF). MFF employs a co-attention mechanism to enhance semantic interactions across different modalities, while a Transformer is utilized for comprehensive feature fusion. Meanwhile, PSF further integrates the fake news probability scores obtained in the previous step. Extensive experiments on established benchmarks (FakeSV and FakeTT) demonstrate our model exhibits outstanding performance in Fake videos detection.
* 2025 icic
Via
