Abstract:Detecting persuasion in argumentative text is a challenging task with important implications for understanding human communication. This work investigates the role of persuasion strategies - such as Attack on reputation, Distraction, and Manipulative wording - in determining the persuasiveness of a text. We conduct experiments on three annotated argument datasets: Winning Arguments (built from the Change My View subreddit), Anthropic/Persuasion, and Persuasion for Good. Our approach leverages large language models (LLMs) with a Multi-Strategy Persuasion Scoring approach that guides reasoning over six persuasion strategies. Results show that strategy-guided reasoning improves the prediction of persuasiveness. To better understand the influence of content, we organize the Winning Argument dataset into broad discussion topics and analyze performance across them. We publicly release this topic-annotated version of the dataset to facilitate future research. Overall, our methodology demonstrates the value of structured, strategy-aware prompting for enhancing interpretability and robustness in argument quality assessment.
Abstract:Large Language Models (LLMs) can generate highly persuasive text, raising concerns about their misuse for propaganda, manipulation, and other harmful purposes. This leads us to our central question: Is LLM-generated persuasion more difficult to automatically detect than human-written persuasion? To address this, we categorize controllable generation approaches for producing persuasive content with LLMs and introduce Persuaficial, a high-quality multilingual benchmark covering six languages: English, German, Polish, Italian, French and Russian. Using this benchmark, we conduct extensive empirical evaluations comparing human-authored and LLM-generated persuasive texts. We find that although overtly persuasive LLM-generated texts can be easier to detect than human-written ones, subtle LLM-generated persuasion consistently degrades automatic detection performance. Beyond detection performance, we provide the first comprehensive linguistic analysis contrasting human and LLM-generated persuasive texts, offering insights that may guide the development of more interpretable and robust detection tools.
Abstract:Disinformation detection is a key aspect of media literacy. Psychological studies have shown that knowledge of persuasive fallacies helps individuals detect disinformation. Inspired by these findings, we experimented with large language models (LLMs) to test whether infusing persuasion knowledge enhances disinformation detection. As a result, we introduce the Persuasion-Augmented Chain of Thought (PCoT), a novel approach that leverages persuasion to improve disinformation detection in zero-shot classification. We extensively evaluate PCoT on online news and social media posts. Moreover, we publish two novel, up-to-date disinformation datasets: EUDisinfo and MultiDis. These datasets enable the evaluation of PCoT on content entirely unseen by the LLMs used in our experiments, as the content was published after the models' knowledge cutoffs. We show that, on average, PCoT outperforms competitive methods by 15% across five LLMs and five datasets. These findings highlight the value of persuasion in strengthening zero-shot disinformation detection.