Large reasoning models (LRMs) achieve strong performance by producing long chains of thought, but their inference costs are high and often generate redundant reasoning. Small language models (SLMs) are far more efficient, yet struggle on multi-step reasoning tasks. A natural idea is to let a large model guide a small one at inference time as a mentor, yet existing collaboration methods often promote imitation, resulting in verbose reasoning without consistent error correction. We propose MentorCollab, an inference-time collaboration method in which an LRM selectively and sparsely guides an SLM, rather than taking over generation. At randomly sampled token positions, we probe for divergences between the two models and use a lightweight verifier to decide whether the SLM should follow a short lookahead segment from its mentor or continue on its own. Across 15 SLM--LRM pairs and 3 domains (math reasoning, general knowledge, and commonsense reasoning), our method improves performance in 12 settings, with average gains of 3.0% and up to 8.0%, while adopting only having 18.4% tokens generated by the expensive mentor model on average. We find that short segments and selective probing are sufficient for effective collaboration. Our results show that selective inference-time guidance restores large-model reasoning ability without substantial inference overhead.
Model collaboration -- systems where multiple language models (LMs) collaborate -- combines the strengths of diverse models with cost in loading multiple LMs. We improve efficiency while preserving the strengths of collaboration by distilling collaborative patterns into a single model, where the model is trained on the outputs of the model collaboration system. At inference time, only the distilled model is employed: it imitates the collaboration while only incurring the cost of a single model. Furthermore, we propose the single-multi evolution loop: multiple LMs collaborate, each distills from the collaborative outputs, and these post-distillation improved LMs collaborate again, forming a collective evolution ecosystem where models evolve and self-improve by interacting with an environment of other models. Extensive experiments with 7 collaboration strategies and 15 tasks (QA, reasoning, factuality, etc.) demonstrate that: 1) individual models improve by 8.0% on average, absorbing the strengths of collaboration while reducing the cost to a single model; 2) the collaboration also benefits from the stronger and more synergistic LMs after distillation, improving over initial systems without evolution by 14.9% on average. Analysis reveals that the single-multi evolution loop outperforms various existing evolutionary AI methods, is compatible with diverse model/collaboration/distillation settings, and helps solve problems where the initial model/system struggles to.
Federated Learning (FL) aims to train a collaborative model while preserving data privacy. However, the distributed nature of this approach still raises privacy and security issues, such as the exposure of sensitive data due to inference attacks and the influence of Byzantine behaviors on the trained model. In particular, achieving both secure aggregation and Byzantine resilience remains challenging, as existing solutions often address these aspects independently. In this work, we propose to address these challenges through a novel approach that combines homomorphic encryption for privacy-preserving aggregation with property-inference-inspired meta-classifiers for Byzantine filtering. First, following the property-inference attacks blueprint, we train a set of filtering meta-classifiers on labeled shadow updates, reproducing a diverse ensemble of Byzantine misbehaviors in FL, including backdoor, gradient-inversion, label-flipping and shuffling attacks. The outputs of these meta-classifiers are then used to cancel the Byzantine encrypted updates by reweighting. Second, we propose an automated method for selecting the optimal kernel and the dimensionality hyperparameters with respect to homomorphic inference, aggregation constraints and efficiency over the CKKS cryptosystem. Finally, we demonstrate through extensive experiments the effectiveness of our approach against Byzantine participants on the FEMNIST, CIFAR10, GTSRB, and acsincome benchmarks. More precisely, our SVM filtering achieves accuracies between $90$% and $94$% for identifying Byzantine updates at the cost of marginal losses in model utility and encrypted inference runtimes ranging from $6$ to $24$ seconds and from $9$ to $26$ seconds for an overall aggregation.
Retrieval-Augmented Generation (RAG) enhances Large Language Models (LLMs) by grounding generation in external knowledge to improve factuality and reduce hallucinations. Yet most deployments assume a centralized corpus, which is infeasible in privacy aware domains where knowledge remains siloed. This motivates federated RAG (FedRAG), where a central LLM server collaborates with distributed silos without sharing raw documents. In context RAG violates this requirement by transmitting verbatim documents, whereas parametric RAG encodes documents into lightweight adapters that merge with a frozen LLM at inference, avoiding raw-text exchange. We adopt the parametric approach but face two unique challenges induced by FedRAG: high storage and communication from per-document adapters, and destructive aggregation caused by indiscriminately merging multiple adapters. We present FedMosaic, the first federated RAG framework built on parametric adapters. FedMosaic clusters semantically related documents into multi-document adapters with document-specific masks to reduce overhead while preserving specificity, and performs selective adapter aggregation to combine only relevance-aligned, nonconflicting adapters. Experiments show that FedMosaic achieves an average 10.9% higher accuracy than state-of-the-art methods in four categories, while lowering storage costs by 78.8% to 86.3% and communication costs by 91.4%, and never sharing raw documents.
Multi-round LLM-based multi-agent systems rely on effective communication structures to support collaboration across rounds. However, most existing methods employ a fixed communication topology during inference, which falls short in many realistic applications where the agents' roles may change \textit{across rounds} due to dynamic adversary, task progression, or time-varying constraints such as communication bandwidth. In this paper, we propose addressing this issue through TodyComm, a \textbf{t}ask-\textbf{o}riented \textbf{dy}namic \textbf{comm}unication algorithm. It produces behavior-driven collaboration topologies that adapt to the dynamics at each round, optimizing the utility for the task through policy gradient. Experiments on five benchmarks demonstrate that under both dynamic adversary and communications budgets, TodyComm delivers superior task effectiveness while retaining token efficiency and scalability.
Misinformation on social media poses a critical threat to information credibility, as its diverse and context-dependent nature complicates detection. Large language model-empowered multi-agent systems (MAS) present a promising paradigm that enables cooperative reasoning and collective intelligence to combat this threat. However, conventional MAS suffer from an information-drowning problem, where abundant truthful content overwhelms sparse and weak deceptive cues. With full input access, agents tend to focus on dominant patterns, and inter-agent communication further amplifies this bias. To tackle this issue, we propose PAMAS, a multi-agent framework with perspective aggregation, which employs hierarchical, perspective-aware aggregation to highlight anomaly cues and alleviate information drowning. PAMAS organizes agents into three roles: Auditors, Coordinators, and a Decision-Maker. Auditors capture anomaly cues from specialized feature subsets; Coordinators aggregate their perspectives to enhance coverage while maintaining diversity; and the Decision-Maker, equipped with evolving memory and full contextual access, synthesizes all subordinate insights to produce the final judgment. Furthermore, to improve efficiency in multi-agent collaboration, PAMAS incorporates self-adaptive mechanisms for dynamic topology optimization and routing-based inference, enhancing both efficiency and scalability. Extensive experiments on multiple benchmark datasets demonstrate that PAMAS achieves superior accuracy and efficiency, offering a scalable and trustworthy way for misinformation detection.
While existing multi-agent systems (MAS) can handle complex problems by enabling collaboration among multiple agents, they are often highly task-specific, relying on manually crafted agent roles and interaction prompts, which leads to increased architectural complexity and limited reusability across tasks. Moreover, most MAS communicate primarily through natural language, making them vulnerable to error accumulation and instability in long-context, multi-stage interactions within internal agent histories. In this work, we propose \textbf{Agent Primitives}, a set of reusable latent building blocks for LLM-based MAS. Inspired by neural network design, where complex models are built from reusable components, we observe that many existing MAS architectures can be decomposed into a small number of recurring internal computation patterns. Based on this observation, we instantiate three primitives: Review, Voting and Selection, and Planning and Execution. All primitives communicate internally via key-value (KV) cache, which improves both robustness and efficiency by mitigating information degradation across multi-stage interactions. To enable automatic system construction, an Organizer agent selects and composes primitives for each query, guided by a lightweight knowledge pool of previously successful configurations, forming a primitive-based MAS. Experiments show that primitives-based MAS improve average accuracy by 12.0-16.5\% over single-agent baselines, reduce token usage and inference latency by approximately 3$\times$-4$\times$ compared to text-based MAS, while incurring only 1.3$\times$-1.6$\times$ overhead relative to single-agent inference and providing more stable performance across model backbones.
Mixture-of-Experts (MoE) has demonstrated strong performance in video understanding tasks, yet its adversarial robustness remains underexplored. Existing attack methods often treat MoE as a unified architecture, overlooking the independent and collaborative weaknesses of key components such as routers and expert modules. To fill this gap, we propose Temporal Lipschitz-Guided Attacks (TLGA) to thoroughly investigate component-level vulnerabilities in video MoE models. We first design attacks on the router, revealing its independent weaknesses. Building on this, we introduce Joint Temporal Lipschitz-Guided Attacks (J-TLGA), which collaboratively perturb both routers and experts. This joint attack significantly amplifies adversarial effects and exposes the Achilles' Heel (collaborative weaknesses) of the MoE architecture. Based on these insights, we further propose Joint Temporal Lipschitz Adversarial Training (J-TLAT). J-TLAT performs joint training to further defend against collaborative weaknesses, enhancing component-wise robustness. Our framework is plug-and-play and reduces inference cost by more than 60% compared with dense models. It consistently enhances adversarial robustness across diverse datasets and architectures, effectively mitigating both the independent and collaborative weaknesses of MoE.
Large language models (LLMs) achieve higher accuracy on challenging reasoning tasks by scaling test-time compute through multiple trajectory sampling. However, standard aggregation methods like majority voting or individual confidence-based filtering face a fundamental "blind spot": they evaluate each trace in isolation. As problems scale in difficulty, models often generate hallucinated paths that exhibit misleadingly high confidence, causing the true solution to be suppressed by a narrow margin in traditional voting. We ask: can we enable traces to "peer-review" each other to resolve these near-miss errors? We introduce Packet-Conditioned Revision (PACER), a training-free, inference-only framework that enables reasoning traces to revise their conclusions through a structured coordination step. After a preliminary screening of generated traces, PACER constructs a compact consensus packet containing (i) unique candidate answers, (ii) their aggregated confidence scores, and (iii) representative reasoning summaries for each candidate answer. Individual traces then perform a targeted self-review conditioned on this packet, allowing them to identify specific logical junctions where they diverged from the broader consensus and pivot if their original reasoning is found to be flawed. Final predictions are obtained via confidence-weighted voting over these revised trajectories. On challenging competitive math benchmarks such as AIME and BRUMO, PACER matches or exceeds the accuracy of 256-sample majority voting, significantly outperforming raw ensemble baselines by transforming simple consensus into a collaborative logical refinement process.
High-resolution remote sensing imagery is characterized by densely distributed land-cover objects and complex boundaries, which places higher demands on both geometric localization and semantic prediction. Existing training-free open-vocabulary semantic segmentation (OVSS) methods typically fuse CLIP and vision foundation models (VFMs) using "one-way injection" and "shallow post-processing" strategies, making it difficult to satisfy these requirements. To address this issue, we propose a spatial-regularization-aware dual-branch collaborative inference framework for training-free OVSS, termed SDCI. First, during feature encoding, SDCI introduces a cross-model attention fusion (CAF) module, which guides collaborative inference by injecting self-attention maps into each other. Second, we propose a bidirectional cross-graph diffusion refinement (BCDR) module that enhances the reliability of dual-branch segmentation scores through iterative random-walk diffusion. Finally, we incorporate low-level superpixel structures and develop a convex-optimization-based superpixel collaborative prediction (CSCP) mechanism to further refine object boundaries. Experiments on multiple remote sensing semantic segmentation benchmarks demonstrate that our method achieves better performance than existing approaches. Moreover, ablation studies further confirm that traditional object-based remote sensing image analysis methods leveraging superpixel structures remain effective within deep learning frameworks. Code: https://github.com/yu-ni1989/SDCI.