Abstract:Existing medical VQA benchmarks mostly focus on single-image analysis, yet clinicians almost always compare a series of images before reaching a diagnosis. To better approximate this workflow, we introduce MedFrameQA -- the first benchmark that explicitly evaluates multi-image reasoning in medical VQA. To build MedFrameQA both at scale and in high-quality, we develop 1) an automated pipeline that extracts temporally coherent frames from medical videos and constructs VQA items whose content evolves logically across images, and 2) a multiple-stage filtering strategy, including model-based and manual review, to preserve data clarity, difficulty, and medical relevance. The resulting dataset comprises 2,851 VQA pairs (gathered from 9,237 high-quality frames in 3,420 videos), covering nine human body systems and 43 organs; every question is accompanied by two to five images. We comprehensively benchmark ten advanced Multimodal LLMs -- both proprietary and open source, with and without explicit reasoning modules -- on MedFrameQA. The evaluation challengingly reveals that all models perform poorly, with most accuracies below 50%, and accuracy fluctuates as the number of images per question increases. Error analysis further shows that models frequently ignore salient findings, mis-aggregate evidence across images, and propagate early mistakes through their reasoning chains; results also vary substantially across body systems, organs, and modalities. We hope this work can catalyze research on clinically grounded, multi-image reasoning and accelerate progress toward more capable diagnostic AI systems.
Abstract:Autoregressive neural language models (LMs) generate a probability distribution over tokens at each time step given a prompt. In this work, we attempt to systematically understand the probability distributions that LMs can produce, showing that some distributions are significantly harder to elicit than others. Specifically, for any target next-token distribution over the vocabulary, we attempt to find a prompt that induces the LM to output a distribution as close as possible to the target, using either soft or hard gradient-based prompt tuning. We find that (1) in general, distributions with very low or very high entropy are easier to approximate than those with moderate entropy; (2) among distributions with the same entropy, those containing ''outlier tokens'' are easier to approximate; (3) target distributions generated by LMs -- even LMs with different tokenizers -- are easier to approximate than randomly chosen targets. These results offer insights into the expressiveness of LMs and the challenges of using them as probability distribution proposers.