Topic:Chemical Reaction Prediction
What is Chemical Reaction Prediction? Chemical reaction prediction is the process of predicting the outcome of chemical reactions using machine learning models.
Papers and Code
Apr 22, 2025
Abstract:Accurately predicting chemical reactions is essential for driving innovation in synthetic chemistry, with broad applications in medicine, manufacturing, and agriculture. At the same time, reaction prediction is a complex problem which can be both time-consuming and resource-intensive for chemists to solve. Deep learning methods offer an appealing solution by enabling high-throughput reaction prediction. However, many existing models are trained on the US Patent Office dataset and treat reactions as overall transformations: mapping reactants directly to products with limited interpretability or mechanistic insight. To address this, we introduce PMechRP (Polar Mechanistic Reaction Predictor), a system that trains machine learning models on the PMechDB dataset, which represents reactions as polar elementary steps that capture electron flow and mechanistic detail. To further expand model coverage and improve generalization, we augment PMechDB with a diverse set of combinatorially generated reactions. We train and compare a range of machine learning models, including transformer-based, graph-based, and two-step siamese architectures. Our best-performing approach was a hybrid model, which combines a 5-ensemble of Chemformer models with a two-step Siamese framework to leverage the accuracy of transformer architectures, while filtering away "alchemical" products using the two-step network predictions. For evaluation, we use a test split of the PMechDB dataset and additionally curate a human benchmark dataset consisting of complete mechanistic pathways extracted from an organic chemistry textbook. Our hybrid model achieves a top-10 accuracy of 94.9% on the PMechDB test set and a target recovery rate of 84.9% on the pathway dataset.
Via

Apr 21, 2025
Abstract:Identifying minimum-energy paths (MEPs) is crucial for understanding chemical reaction mechanisms but remains computationally demanding. We introduce MEPIN, a scalable machine-learning method for efficiently predicting MEPs from reactant and product configurations, without relying on transition-state geometries or pre-optimized reaction paths during training. The task is defined as predicting deviations from geometric interpolations along reaction coordinates. We address this task with a continuous reaction path model based on a symmetry-broken equivariant neural network that generates a flexible number of intermediate structures. The model is trained using an energy-based objective, with efficiency enhanced by incorporating geometric priors from geodesic interpolation as initial interpolations or pre-training objectives. Our approach generalizes across diverse chemical reactions and achieves accurate alignment with reference intrinsic reaction coordinates, as demonstrated on various small molecule reactions and [3+2] cycloadditions. Our method enables the exploration of large chemical reaction spaces with efficient, data-driven predictions of reaction pathways.
* 14 pages, 6 figures; Supporting Information in ancillary files
Via

Mar 13, 2025
Abstract:Accurately predicting chemical reaction outcomes and potential byproducts is a fundamental task of modern chemistry, enabling the efficient design of synthetic pathways and driving progress in chemical science. Reaction mechanism, which tracks electron movements during chemical reactions, is critical for understanding reaction kinetics and identifying unexpected products. Here, we present Reactron, the first electron-based machine learning model for general reaction prediction. Reactron integrates electron movement into its predictions, generating detailed arrow-pushing diagrams that elucidate each mechanistic step leading to product formation. We demonstrate the high predictive performance of Reactron over existing product-only models by a large-scale reaction outcome prediction benchmark, and the adaptability of the model to learn new reactivity upon providing a few examples. Furthermore, it explores combinatorial reaction spaces, uncovering novel reactivities beyond its training data. With robust performance in both in- and out-of-distribution predictions, Reactron embodies human-like reasoning in chemistry and opens new frontiers in reaction discovery and synthesis design.
* 15 pages, 3 figures
Via

Mar 07, 2025
Abstract:Molecular language modeling tasks such as molecule captioning have been recognized for their potential to further understand molecular properties that can aid drug discovery or material synthesis based on chemical reactions. Unlike the common use of molecule graphs in predicting molecular properties, most methods in molecular language modeling rely heavily on SMILES sequences. This preference is because the task involves generating a sequence of multiple tokens using transformer-based models. Therefore, a main challenge is determining how to integrate graph data, which contains structural and spatial information about molecules, with text data. In addition, simply using both 1D SMILES text and 2D graph as inputs without addressing how they align and represent the molecule structure in different modalities makes it challenging to fully utilize structural knowledge about molecules. To this end, we propose GraphT5, a multi-modal framework that integrates 1D SMILES text and 2D graph representations of molecules for molecular language modeling. Specifically, we introduce a novel cross-token attention module in GraphT5 to bridge the gap arising from the fundamental differences between the two modalities of molecule representations. Cross-token attention exploits implicit information between SMILES and graphs of molecules, resulting from their interactions at a fine-grained token level that benefits molecular language modeling. Extensive experiments including molecule captioning, IUPAC name prediction tasks, and case studies show that our GraphT5 outperforms the latest baseline approaches, which validates the effectiveness of our GraphT5 in sufficiently utilizing 1D SMILES text and 2D graph representations.
Via

Feb 18, 2025
Abstract:Central to our understanding of chemical reactivity is the principle of mass conservation, which is fundamental for ensuring physical consistency, balancing equations, and guiding reaction design. However, data-driven computational models for tasks such as reaction product prediction rarely abide by this most basic constraint. In this work, we recast the problem of reaction prediction as a problem of electron redistribution using the modern deep generative framework of flow matching. Our model, FlowER, overcomes limitations inherent in previous approaches by enforcing exact mass conservation, thereby resolving hallucinatory failure modes, recovering mechanistic reaction sequences for unseen substrate scaffolds, and generalizing effectively to out-of-domain reaction classes with extremely data-efficient fine-tuning. FlowER additionally enables estimation of thermodynamic or kinetic feasibility and manifests a degree of chemical intuition in reaction prediction tasks. This inherently interpretable framework represents a significant step in bridging the gap between predictive accuracy and mechanistic understanding in data-driven reaction outcome prediction.
Via

Mar 03, 2025
Abstract:The discovery and optimization of high-energy materials (HEMs) are constrained by the prohibitive computational expense and prolonged development cycles inherent in conventional approaches. In this work, we develop a general neural network potential (NNP) that efficiently predicts the structural, mechanical, and decomposition properties of HEMs composed of C, H, N, and O. Our framework leverages pre-trained NNP models, fine-tuned using transfer learning on energy and force data derived from density functional theory (DFT) calculations. This strategy enables rapid adaptation across 20 different HEM systems while maintaining DFT-level accuracy, significantly reducing computational costs. A key aspect of this work is the ability of NNP model to capture the chemical activity space of HEMs, accurately describe the key atomic interactions and reaction mechanisms during thermal decomposition. The general NNP model has been applied in molecular dynamics (MD) simulations and validated with experimental data for various HEM structures. Results show that the NNP model accurately predicts the structural, mechanical, and decomposition properties of HEMs by effectively describing their chemical activity space. Compared to traditional force fields, it offers superior DFT-level accuracy and generalization across both microscopic and macroscopic properties, reducing the computational and experimental costs. This work provides an efficient strategy for the design and development of HEMs and proposes a promising framework for integrating DFT, machine learning, and experimental methods in materials research. (To facilitate further research and practical applications, we open-source our NNP model on GitHub: https://github.com/MingjieWen/General-NNP-model-for-C-H-N-O-Energetic-Materials.)
* 41 pages,16 figures
Via

Feb 26, 2025
Abstract:Chemical reaction data is a pivotal asset, driving advances in competitive fields such as pharmaceuticals, materials science, and industrial chemistry. Its proprietary nature renders it sensitive, as it often includes confidential insights and competitive advantages organizations strive to protect. However, in contrast to this need for confidentiality, the current standard training paradigm for machine learning-based retrosynthesis gathers reaction data from multiple sources into one single edge to train prediction models. This paradigm poses considerable privacy risks as it necessitates broad data availability across organizational boundaries and frequent data transmission between entities, potentially exposing proprietary information to unauthorized access or interception during storage and transfer. In the present study, we introduce the chemical knowledge-informed framework (CKIF), a privacy-preserving approach for learning retrosynthesis models. CKIF enables distributed training across multiple chemical organizations without compromising the confidentiality of proprietary reaction data. Instead of gathering raw reaction data, CKIF learns retrosynthesis models through iterative, chemical knowledge-informed aggregation of model parameters. In particular, the chemical properties of predicted reactants are leveraged to quantitatively assess the observable behaviors of individual models, which in turn determines the adaptive weights used for model aggregation. On a variety of reaction datasets, CKIF outperforms several strong baselines by a clear margin (e.g., ~20% performance improvement over FedAvg on USPTO-50K), showing its feasibility and superiority to stimulate further research on privacy-preserving retrosynthesis.
Via

Feb 03, 2025
Abstract:Computational prediction of enzymatic reactions represents a crucial challenge in sustainable chemical synthesis across various scientific domains, ranging from drug discovery to materials science and green chemistry. These syntheses rely on proteins that selectively catalyze complex molecular transformations. These protein catalysts exhibit remarkable substrate adaptability, with the same protein often catalyzing different chemical transformations depending on its molecular partners. Current approaches to protein representation in reaction prediction either ignore protein structure entirely or rely on static embeddings, failing to capture how proteins dynamically adapt their behavior to different substrates. We present Docking-Aware Attention (DAA), a novel architecture that generates dynamic, context-dependent protein representations by incorporating molecular docking information into the attention mechanism. DAA combines physical interaction scores from docking predictions with learned attention patterns to focus on protein regions most relevant to specific molecular interactions. We evaluate our method on enzymatic reaction prediction, where it outperforms previous state-of-the-art methods, achieving 62.2\% accuracy versus 56.79\% on complex molecules and 55.54\% versus 49.45\% on innovative reactions. Through detailed ablation studies and visualizations, we demonstrate how DAA generates interpretable attention patterns that adapt to different molecular contexts. Our approach represents a general framework for context-aware protein representation in biocatalysis prediction, with potential applications across enzymatic synthesis planning. We open-source our implementation and pre-trained models to facilitate further research.
Via

Jan 20, 2025
Abstract:Accurate prediction of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for ensuring safety, reducing maintenance costs, and optimizing usage. However, predicting RUL is challenging due to the nonlinear characteristics of the degradation caused by complex chemical reactions. Machine learning allows precise predictions by learning the latent functions of degradation relationships based on cycling behavior. This study introduces an accurate RUL prediction approach based on feature engineering and DLinear, applied to the dataset from NASA's Prognostics Center of Excellence. Among the 20 features generated from current, voltage, temperature, and time provided in this dataset, key features contributing to degradation are selected using Pearson correlation coefficient and Shapley values. Shapley value-based feature selection effectively reflects cell-to-cell variability, showing similar importance rankings across all cells. The DLinear-based RUL prediction using key features efficiently captures the time-series trend, demonstrating significantly better performance compared to Long Short-Term Memory and Transformer models.
Via

Feb 07, 2025
Abstract:Retrosynthesis strategically plans the synthesis of a chemical target compound from simpler, readily available precursor compounds. This process is critical for synthesizing novel inorganic materials, yet traditional methods in inorganic chemistry continue to rely on trial-and-error experimentation. Emerging machine-learning approaches struggle to generalize to entirely new reactions due to their reliance on known precursors, as they frame retrosynthesis as a multi-label classification task. To address these limitations, we propose Retro-Rank-In, a novel framework that reformulates the retrosynthesis problem by embedding target and precursor materials into a shared latent space and learning a pairwise ranker on a bipartite graph of inorganic compounds. We evaluate Retro-Rank-In's generalizability on challenging retrosynthesis dataset splits designed to mitigate data duplicates and overlaps. For instance, for Cr2AlB2, it correctly predicts the verified precursor pair CrB + Al despite never seeing them in training, a capability absent in prior work. Extensive experiments show that Retro-Rank-In sets a new state-of-the-art, particularly in out-of-distribution generalization and candidate set ranking, offering a powerful tool for accelerating inorganic material synthesis.
Via
