We study sequential change-point detection for spatio-temporal point processes, where actionable detection requires not only identifying when a distributional change occurs but also localizing where it manifests in space. While classical quickest change detection methods provide strong guarantees on detection delay and false-alarm rates, existing approaches for point-process data predominantly focus on temporal changes and do not explicitly infer affected spatial regions. We propose a likelihood-free, score-based detection framework that jointly estimates the change time and the change region in continuous space-time without assuming parametric knowledge of the pre- or post-change dynamics. The method leverages a localized and conditionally weighted Hyvärinen score to quantify event-level deviations from nominal behavior and aggregates these scores using a spatio-temporal CUSUM-type statistic over a prescribed class of spatial regions. Operating sequentially, the procedure outputs both a stopping time and an estimated change region, enabling real-time detection with spatial interpretability. We establish theoretical guarantees on false-alarm control, detection delay, and spatial localization accuracy, and demonstrate the effectiveness of the proposed approach through simulations and real-world spatio-temporal event data.
We present PIRATR, an end-to-end 3D object detection framework for robotic use cases in point clouds. Extending PI3DETR, our method streamlines parametric 3D object detection by jointly estimating multi-class 6-DoF poses and class-specific parametric attributes directly from occlusion-affected point cloud data. This formulation enables not only geometric localization but also the estimation of task-relevant properties for parametric objects, such as a gripper's opening, where the 3D model is adjusted according to simple, predefined rules. The architecture employs modular, class-specific heads, making it straightforward to extend to novel object types without re-designing the pipeline. We validate PIRATR on an automated forklift platform, focusing on three structurally and functionally diverse categories: crane grippers, loading platforms, and pallets. Trained entirely in a synthetic environment, PIRATR generalizes effectively to real outdoor LiDAR scans, achieving a detection mAP of 0.919 without additional fine-tuning. PIRATR establishes a new paradigm of pose-aware, parameterized perception. This bridges the gap between low-level geometric reasoning and actionable world models, paving the way for scalable, simulation-trained perception systems that can be deployed in dynamic robotic environments. Code available at https://github.com/swingaxe/piratr.
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
Spoken dialogues with and between voice agents are becoming increasingly common, yet assessing them for their socially harmful content such as violence, harassment, and hate remains text-centric and fails to account for audio-specific cues and transcription errors. We present LALM-as-a-Judge, the first controlled benchmark and systematic study of large audio-language models (LALMs) as safety judges for multi-turn spoken dialogues. We generate 24,000 unsafe and synthetic spoken dialogues in English that consist of 3-10 turns, by having a single dialogue turn including content with one of 8 harmful categories (e.g., violence) and on one of 5 grades, from very mild to severe. On 160 dialogues, 5 human raters confirmed reliable unsafe detection and a meaningful severity scale. We benchmark three open-source LALMs: Qwen2-Audio, Audio Flamingo 3, and MERaLiON as zero-shot judges that output a scalar safety score in [0,1] across audio-only, transcription-only, or multimodal inputs, along with a transcription-only LLaMA baseline. We measure the judges' sensitivity to detecting unsafe content, the specificity in ordering severity levels, and the stability of the score in dialogue turns. Results reveal architecture- and modality-dependent trade-offs: the most sensitive judge is also the least stable across turns, while stable configurations sacrifice detection of mild harmful content. Transcription quality is a key bottleneck: Whisper-Large may significantly reduce sensitivity for transcription-only modes, while largely preserving severity ordering. Audio becomes crucial when paralinguistic cues or transcription fidelity are category-critical. We summarize all findings and provide actionable guidance for practitioners.
Large Language Model (LLM)-based agents that plan, use tools and act has begun to shape healthcare and medicine. Reported studies demonstrate competence on various tasks ranging from EHR analysis and differential diagnosis to treatment planning and research workflows. Yet the literature largely consists of overviews which are either broad surveys or narrow dives into a single capability (e.g., memory, planning, reasoning), leaving healthcare work without a common frame. We address this by reviewing 49 studies using a seven-dimensional taxonomy: Cognitive Capabilities, Knowledge Management, Interaction Patterns, Adaptation & Learning, Safety & Ethics, Framework Typology and Core Tasks & Subtasks with 29 operational sub-dimensions. Using explicit inclusion and exclusion criteria and a labeling rubric (Fully Implemented, Partially Implemented, Not Implemented), we map each study to the taxonomy and report quantitative summaries of capability prevalence and co-occurrence patterns. Our empirical analysis surfaces clear asymmetries. For instance, the External Knowledge Integration sub-dimension under Knowledge Management is commonly realized (~76% Fully Implemented) whereas Event-Triggered Activation sub-dimenison under Interaction Patterns is largely absent (~92% Not Implemented) and Drift Detection & Mitigation sub-dimension under Adaptation & Learning is rare (~98% Not Implemented). Architecturally, Multi-Agent Design sub-dimension under Framework Typology is the dominant pattern (~82% Fully Implemented) while orchestration layers remain mostly partial. Across Core Tasks & Subtasks, information centric capabilities lead e.g., Medical Question Answering & Decision Support and Benchmarking & Simulation, while action and discovery oriented areas such as Treatment Planning & Prescription still show substantial gaps (~59% Not Implemented).
While passive agents merely follow instructions, proactive agents align with higher-level objectives, such as assistance and safety by continuously monitoring the environment to determine when and how to act. However, developing proactive agents is hindered by the lack of specialized resources. To address this, we introduce ProAct-75, a benchmark designed to train and evaluate proactive agents across diverse domains, including assistance, maintenance, and safety monitoring. Spanning 75 tasks, our dataset features 91,581 step-level annotations enriched with explicit task graphs. These graphs encode step dependencies and parallel execution possibilities, providing the structural grounding necessary for complex decision-making. Building on this benchmark, we propose ProAct-Helper, a reference baseline powered by a Multimodal Large Language Model (MLLM) that grounds decision-making in state detection, and leveraging task graphs to enable entropy-driven heuristic search for action selection, allowing agents to execute parallel threads independently rather than mirroring the human's next step. Extensive experiments demonstrate that ProAct-Helper outperforms strong closed-source models, improving trigger detection mF1 by 6.21%, saving 0.25 more steps in online one-step decision, and increasing the rate of parallel actions by 15.58%.
Downstream fine-tuning of vision-language-action (VLA) models enhances robotics, yet exposes the pipeline to backdoor risks. Attackers can pretrain VLAs on poisoned data to implant backdoors that remain stealthy but can trigger harmful behavior during inference. However, existing defenses either lack mechanistic insight into multimodal backdoors or impose prohibitive computational costs via full-model retraining. To this end, we uncover a deep-layer attention grabbing mechanism: backdoors redirect late-stage attention and form compact embedding clusters near the clean manifold. Leveraging this insight, we introduce Bera, a test-time backdoor erasure framework that detects tokens with anomalous attention via latent-space localization, masks suspicious regions using deep-layer cues, and reconstructs a trigger-free image to break the trigger-unsafe-action mapping while restoring correct behavior. Unlike prior defenses, Bera requires neither retraining of VLAs nor any changes to the training pipeline. Extensive experiments across multiple embodied platforms and tasks show that Bera effectively maintains nominal performance, significantly reduces attack success rates, and consistently restores benign behavior from backdoored outputs, thereby offering a robust and practical defense mechanism for securing robotic systems.
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
Language-referred audio-visual segmentation (Ref-AVS) aims to segment target objects described by natural language by jointly reasoning over video, audio, and text. Beyond generating segmentation masks, providing rich and interpretable diagnoses of mask quality remains largely underexplored. In this work, we introduce Mask Quality Assessment in the Ref-AVS context (MQA-RefAVS), a new task that evaluates the quality of candidate segmentation masks without relying on ground-truth annotations as references at inference time. Given audio-visual-language inputs and each provided segmentation mask, the task requires estimating its IoU with the unobserved ground truth, identifying the corresponding error type, and recommending an actionable quality-control decision. To support this task, we construct MQ-RAVSBench, a benchmark featuring diverse and representative mask error modes that span both geometric and semantic issues. We further propose MQ-Auditor, a multimodal large language model (MLLM)-based auditor that explicitly reasons over multimodal cues and mask information to produce quantitative and qualitative mask quality assessments. Extensive experiments demonstrate that MQ-Auditor outperforms strong open-source and commercial MLLMs and can be integrated with existing Ref-AVS systems to detect segmentation failures and support downstream segmentation improvement. Data and codes will be released at https://github.com/jasongief/MQA-RefAVS.