Abstract:Adaptive learning systems optimize content delivery based on performance metrics but ignore the dynamic attention fluctuations that characterize neurodivergent learners. We present AttentionGuard, a framework that detects engagement-attention states from privacy-preserving behavioral signals and adapts interface elements accordingly. Our approach models four attention states derived from ADHD phenomenology and implements five novel UI adaptation patterns including bi-directional scaffolding that responds to both understimulation and overstimulation. We validate our detection model on the OULAD dataset, achieving 87.3% classification accuracy, and demonstrate correlation with clinical ADHD profiles through cross-validation on the HYPERAKTIV dataset. A Wizard-of-Oz study with 11 adults showing ADHD characteristics found significantly reduced cognitive load in the adaptive condition (NASA-TLX: 47.2 vs 62.8, Cohen's d=1.21, p=0.008) and improved comprehension (78.4% vs 61.2%, p=0.009). Concordance analysis showed 84% agreement between wizard decisions and automated classifier predictions, supporting deployment feasibility. The system is presented as an interactive demo where observers can inspect detected attention states, observe real-time UI adaptations, and compare automated decisions with human-in-the-loop overrides. We contribute empirically validated UI patterns for attention-adaptive interfaces and evidence that behavioral attention detection can meaningfully support neurodivergent learning experiences.
Abstract:Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
Abstract:Domestic AI agents faces ethical, autonomy, and inclusion challenges, particularly for overlooked groups like children, elderly, and Neurodivergent users. We present the Plural Voices Model (PVM), a novel single-agent framework that dynamically negotiates multi-user needs through real-time value alignment, leveraging diverse public datasets on mental health, eldercare, education, and moral reasoning. Using human+synthetic curriculum design with fairness-aware scenarios and ethical enhancements, PVM identifies core values, conflicts, and accessibility requirements to inform inclusive principles. Our privacy-focused prototype features adaptive safety scaffolds, tailored interactions (e.g., step-by-step guidance for Neurodivergent users, simple wording for children), and equitable conflict resolution. In preliminary evaluations, PVM outperforms multi-agent baselines in compliance (76% vs. 70%), fairness (90% vs. 85%), safety-violation rate (0% vs. 7%), and latency. Design innovations, including video guidance, autonomy sliders, family hubs, and adaptive safety dashboards, demonstrate new directions for ethical and inclusive domestic AI, for building user-centered agentic systems in plural domestic contexts. Our Codes and Model are been open sourced, available for reproduction: https://github.com/zade90/Agora