Abstract:While passive agents merely follow instructions, proactive agents align with higher-level objectives, such as assistance and safety by continuously monitoring the environment to determine when and how to act. However, developing proactive agents is hindered by the lack of specialized resources. To address this, we introduce ProAct-75, a benchmark designed to train and evaluate proactive agents across diverse domains, including assistance, maintenance, and safety monitoring. Spanning 75 tasks, our dataset features 91,581 step-level annotations enriched with explicit task graphs. These graphs encode step dependencies and parallel execution possibilities, providing the structural grounding necessary for complex decision-making. Building on this benchmark, we propose ProAct-Helper, a reference baseline powered by a Multimodal Large Language Model (MLLM) that grounds decision-making in state detection, and leveraging task graphs to enable entropy-driven heuristic search for action selection, allowing agents to execute parallel threads independently rather than mirroring the human's next step. Extensive experiments demonstrate that ProAct-Helper outperforms strong closed-source models, improving trigger detection mF1 by 6.21%, saving 0.25 more steps in online one-step decision, and increasing the rate of parallel actions by 15.58%.




Abstract:In this work, we propose a novel strategy to ensure infants, who inadvertently displace their quilts during sleep, are promptly and accurately re-covered. Our approach is formulated into two subsequent steps: interference resolution and quilt spreading. By leveraging the DWPose human skeletal detection and the Segment Anything instance segmentation models, the proposed method can accurately recognize the states of the infant and the quilt over her, which involves addressing the interferences resulted from an infant's limbs laid on part of the quilt. Building upon prior research, the EM*D deep learning model is employed to forecast quilt state transitions before and after quilt spreading actions. To improve the sensitivity of the network in distinguishing state variation of the handled quilt, we introduce an enhanced loss function that translates the voxelized quilt state into a more representative one. Both simulation and real-world experiments validate the efficacy of our method, in spreading and recover a quilt over an infant.