Abstract:Localization and mapping of an environment are crucial tasks for any robot operating in unstructured environments. Time-of-flight (ToF) sensors (e.g.,~lidar) have proven useful in mobile robotics, where high-resolution sensors can be used for simultaneous localization and mapping. In soft and continuum robotics, however, these high-resolution sensors are too large for practical use. This, combined with the deformable nature of such robots, has resulted in continuum robot (CR) localization and mapping in unstructured environments being a largely untouched area. In this work, we present a localization technique for CRs that relies on small, low-resolution ToF sensors distributed along the length of the robot. By fusing measurement information with a robot shape prior, we show that accurate localization is possible despite each sensor experiencing frequent degenerate scenarios. We achieve an average localization error of 2.5cm in position and 7.2° in rotation across all experimental conditions with a 53cm long robot. We demonstrate that the results are repeated across multiple environments, in both simulation and real-world experiments, and study robustness in the estimation to deviations in the prior map.
Abstract:We present the Koopman-Inspired Learned Observations Extended Kalman Filter (KILO-EKF), which combines a standard EKF prediction step with a correction step based on a Koopman-inspired measurement model learned from data. By lifting measurements into a feature space where they are linear in the state, KILO-EKF enables flexible modeling of complex or poorly calibrated sensors while retaining the structure and efficiency of recursive filtering. The resulting linear-Gaussian measurement model is learned in closed form from groundtruth training data, without iterative optimization or reliance on an explicit parametric sensor model. At inference, KILO-EKF performs a standard EKF update using Jacobians obtained via the learned lifting. We validate the approach on a real-world quadrotor localization task using an IMU, ultra-wideband (UWB) sensors, and a downward-facing laser. We compare against multiple EKF baselines with varying levels of sensor calibration. KILO-EKF achieves better accuracy and consistency compared to data-calibrated baselines, and significantly outperforms EKFs that rely on imperfect geometric models, while maintaining real-time inference and fast training. These results demonstrate the effectiveness of Koopman-inspired measurement learning as a scalable alternative to traditional model-based calibration.
Abstract:In future operations on the lunar surface, automated vehicles will be required to transport cargo between known locations. Such vehicles must be able to navigate precisely in safe regions to avoid natural hazards, human-constructed infrastructure, and dangerous dark shadows. Rovers must be able to park their cargo autonomously within a small tolerance to achieve a successful pickup and delivery. In this field test, Lidar Teach and Repeat provides an ideal autonomy solution for transporting cargo in this way. A one-tonne path-to-flight rover was driven in a semi-autonomous remote-control mode to create a network of safe paths. Once the route was taught, the rover immediately repeated the entire network of paths autonomously while carrying cargo. The closed-loop performance is accurate enough to align the vehicle to the cargo and pick it up. This field report describes a two-week deployment at the Canadian Space Agency's Analogue Terrain, culminating in a simulated lunar operation to evaluate the system's capabilities. Successful cargo collection and delivery were demonstrated in harsh environmental conditions.
Abstract:Stochastic state estimation methods for continuum robots (CRs) often struggle to balance accuracy and computational efficiency. While several recent works have explored sliding-window formulations for CRs, these methods are limited to simplified, discrete-time approximations and do not provide stochastic representations. In contrast, current stochastic filter methods must run at the speed of measurements, limiting their full potential. Recent works in continuous-time estimation techniques for CRs show a principled approach to addressing this runtime constraint, but are currently restricted to offline operation. In this work, we present a sliding-window filter (SWF) for continuous-time state estimation of CRs that improves upon the accuracy of a filter approach while enabling continuous-time methods to operate online, all while running at faster-than-real-time speeds. This represents the first stochastic SWF specifically designed for CRs, providing a promising direction for future research in this area.
Abstract:State estimation techniques for continuum robots (CRs) typically involve using computationally complex dynamic models, simplistic shape approximations, or are limited to quasi-static methods. These limitations can be sensitive to unmodelled disturbances acting on the robot. Inspired by a factor-graph optimization paradigm, this work introduces a continuous-time stochastic state estimation framework for continuum robots. We introduce factors based on continuous-time kinematics that are corrupted by a white noise Gaussian process (GP). By using a simple robot model paired with high-rate sensing, we show adaptability to unmodelled external forces and data dropout. The result contains an estimate of the mean and covariance for the robot's pose, velocity, and strain, each of which can be interpolated continuously in time or space. This same interpolation scheme can be used during estimation, allowing for inclusion of measurements on states that are not explicitly estimated. Our method's inherent sparsity leads to a linear solve complexity with respect to time and interpolation queries in constant time. We demonstrate our method on a CR with gyroscope and pose sensors, highlighting its versatility in real-world systems.
Abstract:Occupancy mapping has been a key enabler of mobile robotics. Originally based on a discrete grid representation, occupancy mapping has evolved towards continuous representations that can predict the occupancy status at any location and account for occupancy correlations between neighbouring areas. Gaussian Process (GP) approaches treat this task as a binary classification problem using both observations of occupied and free space. Conceptually, a GP latent field is passed through a logistic function to obtain the output class without actually manipulating the GP latent field. In this work, we propose to act directly on the latent function to efficiently integrate free space information as a prior based on the shape of the sensor's field-of-view. A major difference with existing methods is the change in the classification problem, as we distinguish between free and unknown space. The `occupied' area is the infinitesimally thin location where the class transitions from free to unknown. We demonstrate in simulated environments that our approach is sound and leads to competitive reconstruction accuracy.
Abstract:This paper presents Virtual Teach and Repeat (VirT&R): an extension of the Teach and Repeat (T&R) framework that enables GPS-denied, zero-shot autonomous ground vehicle navigation in untraversed environments. VirT&R leverages aerial imagery captured for a target environment to train a Neural Radiance Field (NeRF) model so that dense point clouds and photo-textured meshes can be extracted. The NeRF mesh is used to create a high-fidelity simulation of the environment for piloting an unmanned ground vehicle (UGV) to virtually define a desired path. The mission can then be executed in the actual target environment by using NeRF-derived point cloud submaps associated along the path and an existing LiDAR Teach and Repeat (LT&R) framework. We benchmark the repeatability of VirT&R on over 12 km of autonomous driving data using physical markings that allow a sim-to-real lateral path-tracking error to be obtained and compared with LT&R. VirT&R achieved measured root mean squared errors (RMSE) of 19.5 cm and 18.4 cm in two different environments, which are slightly less than one tire width (24 cm) on the robot used for testing, and respective maximum errors were 39.4 cm and 47.6 cm. This was done using only the NeRF-derived teach map, demonstrating that VirT&R has similar closed-loop path-tracking performance to LT&R but does not require a human to manually teach the path to the UGV in the actual environment.
Abstract:This paper presents aUToPath, a unified online framework for global path-planning and control to address the challenge of autonomous navigation in cluttered urban environments. A key component of our framework is a novel hybrid planner that combines pre-computed lattice maps with dynamic free-space sampling to efficiently generate optimal driveable corridors in cluttered scenarios. Our system also features sequential convex programming (SCP)-based model predictive control (MPC) to refine the corridors into smooth, dynamically consistent trajectories. A single optimization problem is used to both generate a trajectory and its corresponding control commands; this addresses limitations of decoupled approaches by guaranteeing a safe and feasible path. Simulation results of the novel planner on randomly generated obstacle-rich scenarios demonstrate the success rate of a free-space Adaptively Informed Trees* (AIT*)-based planner, and runtimes comparable to a lattice-based planner. Real-world experiments of the full system on a Chevrolet Bolt EUV further validate performance in dense obstacle fields, demonstrating no violations of traffic, kinematic, or vehicle constraints, and a 100% success rate across eight trials.
Abstract:Over the past decades, a tremendous amount of work has addressed the topic of ego-motion estimation of moving platforms based on various proprioceptive and exteroceptive sensors. At the cost of ever-increasing computational load and sensor complexity, odometry algorithms have reached impressive levels of accuracy with minimal drift in various conditions. In this paper, we question the need for more research on odometry for autonomous driving by assessing the accuracy of one of the simplest algorithms: the direct integration of wheel encoder data and yaw rate measurements from a gyroscope. We denote this algorithm as Odometer-Gyroscope (OG) odometry. This work shows that OG odometry can outperform current state-of-the-art radar-inertial SE(2) odometry for a fraction of the computational cost in most scenarios. For example, the OG odometry is on top of the Boreas leaderboard with a relative translation error of 0.20%, while the second-best method displays an error of 0.26%. Lidar-inertial approaches can provide more accurate estimates, but the computational load is three orders of magnitude higher than the OG odometry. To further the analysis, we have pushed the limits of the OG odometry by purposely violating its fundamental no-slip assumption using data collected during a heavy snowstorm with different driving behaviours. Our conclusion shows that a significant amount of slippage is required to result in non-satisfactory pose estimates from the OG odometry.
Abstract:Teach and repeat is a rapid way to achieve autonomy in challenging terrain and off-road environments. A human operator pilots the vehicles to create a network of paths that are mapped and associated with odometry. Immediately after teaching, the system can drive autonomously within its tracks. This precision lets operators remain confident that the robot will follow a traversable route. However, this operational paradigm has rarely been explored in off-road environments that change significantly through seasonal variation. This paper presents preliminary field trials using lidar and radar implementations of teach and repeat. Using a subset of the data from the upcoming FoMo dataset, we attempted to repeat routes that were 4 days, 44 days, and 113 days old. Lidar teach and repeat demonstrated a stronger ability to localize when the ground points were removed. FMCW radar was often able to localize on older maps, but only with small deviations from the taught path. Additionally, we highlight specific cases where radar localization failed with recent maps due to the high pitch or roll of the vehicle. We highlight lessons learned during the field deployment and highlight areas to improve to achieve reliable teach and repeat with seasonal changes in the environment. Please follow the dataset at https://norlab-ulaval.github.io/FoMo-website for updates and information on the data release.