Abstract:Large-scale itinerary planning is a variant of the traveling salesman problem, aiming to determine an optimal path that maximizes the collected points of interest (POIs) scores while minimizing travel time and cost, subject to travel duration constraints. This paper analyzes the decomposability of large-scale itinerary planning, proving that strict decomposability is difficult to satisfy, and introduces a weak decomposability definition based on a necessary condition, deriving the corresponding graph structures that fulfill this property. With decomposability guaranteed, we propose a novel multi-objective cooperative coevolutionary algorithm for large-scale itinerary planning, addressing the challenges of component imbalance and interactions. Specifically, we design a dynamic decomposition strategy based on the normalized fitness within each component, define optimization potential considering component scale and contribution, and develop a computational resource allocation strategy. Finally, we evaluate the proposed algorithm on a set of real-world datasets. Comparative experiments with state-of-the-art multi-objective itinerary planning algorithms demonstrate the superiority of our approach, with performance advantages increasing as the problem scale grows.
Abstract:Real-world networks often involve both keywords and locations, along with travel time variations between locations due to traffic conditions. However, most existing cohesive subgraph-based community search studies utilize a single attribute, either keywords or locations, to identify communities. They do not simultaneously consider both keywords and locations, which results in low semantic or spatial cohesiveness of the detected communities, and they fail to account for variations in travel time. Additionally, these studies traverse the entire network to build efficient indexes, but the detected community only involves nodes around the query node, leading to the traversal of nodes that are not relevant to the community. Therefore, we propose the problem of discovering semantic-spatial aware k-core, which refers to a k-core with high semantic and time-dependent spatial cohesiveness containing the query node. To address this problem, we propose an exact and a greedy algorithm, both of which gradually expand outward from the query node. They are local methods that only access the local part of the attributed network near the query node rather than the entire network. Moreover, we design a method to calculate the semantic similarity between two keywords using large language models. This method alleviates the disadvantages of keyword-matching methods used in existing community search studies, such as mismatches caused by differently expressed synonyms and the presence of irrelevant words. Experimental results show that the greedy algorithm outperforms baselines in terms of structural, semantic, and time-dependent spatial cohesiveness.
Abstract:The "pre-train, prompt" paradigm is widely adopted in various graph-based tasks and has shown promising performance in community detection. Most existing semi-supervised community detection algorithms detect communities based on known ones, and the detected communities typically do not contain the given query node. Therefore, they are not suitable for searching the community of a given node. Motivated by this, we adopt this paradigm into the semi-supervised community search for the first time and propose Pre-trained Prompt-driven Community Search (PPCS), a novel model designed to enhance search accuracy and efficiency. PPCS consists of three main components: node encoding, sample generation, and prompt-driven fine-tuning. Specifically, the node encoding component employs graph neural networks to learn local structural patterns of nodes in a graph, thereby obtaining representations for nodes and communities. Next, the sample generation component identifies an initial community for a given node and selects known communities that are structurally similar to the initial one as training samples. Finally, the prompt-driven fine-tuning component leverages these samples as prompts to guide the final community prediction. Experimental results on five real-world datasets demonstrate that PPCS performs better than baseline algorithms. It also achieves higher community search efficiency than semi-supervised community search baseline methods, with ablation studies verifying the effectiveness of each component of PPCS.
Abstract:Hypergraphs, capable of representing high-order interactions via hyperedges, have become a powerful tool for modeling real-world biological and social systems. Inherent relationships within these real-world systems, such as the encoding relationship between genes and their protein products, drive the establishment of interconnections between multiple hypergraphs. Here, we demonstrate how to utilize those interconnections between multiple hypergraphs to synthesize integrated information from multiple higher-order systems, thereby enhancing understanding of underlying structures. We propose a model based on the stochastic block model, which integrates information from multiple hypergraphs to reveal latent high-order structures. Real-world hyperedges exhibit preferential attachment, where certain nodes dominate hyperedge formation. To characterize this phenomenon, our model introduces hyperedge internal degree to quantify nodes' contributions to hyperedge formation. This model is capable of mining communities, predicting missing hyperedges of arbitrary sizes within hypergraphs, and inferring inter-hypergraph edges between hypergraphs. We apply our model to high-order datasets to evaluate its performance. Experimental results demonstrate strong performance of our model in community detection, hyperedge prediction, and inter-hypergraph edge prediction tasks. Moreover, we show that our model enables analysis of multiple hypergraphs of different types and supports the analysis of a single hypergraph in the absence of inter-hypergraph edges. Our work provides a practical and flexible tool for analyzing multiple hypergraphs, greatly advancing the understanding of the organization in real-world high-order systems.
Abstract:With the rapid development of Deep Neural Networks (DNNs), they have been applied in numerous fields. However, research indicates that DNNs are susceptible to adversarial examples, and this is equally true in the multi-label domain. To further investigate multi-label adversarial examples, we introduce a novel type of attacks, termed "Showing Many Labels". The objective of this attack is to maximize the number of labels included in the classifier's prediction results. In our experiments, we select nine attack algorithms and evaluate their performance under "Showing Many Labels". Eight of the attack algorithms were adapted from the multi-class environment to the multi-label environment, while the remaining one was specifically designed for the multi-label environment. We choose ML-LIW and ML-GCN as target models and train them on four popular multi-label datasets: VOC2007, VOC2012, NUS-WIDE, and COCO. We record the success rate of each algorithm when it shows the expected number of labels in eight different scenarios. Experimental results indicate that under the "Showing Many Labels", iterative attacks perform significantly better than one-step attacks. Moreover, it is possible to show all labels in the dataset.
Abstract:Deep Neural Networks (DNNs) have been widely used in many areas such as autonomous driving and face recognition. However, DNN model is fragile to backdoor attack. A backdoor in the DNN model can be activated by a poisoned input with trigger and leads to wrong prediction, which causes serious security issues in applications. It is challenging for current defenses to eliminate the backdoor effectively with limited computing resources, especially when the sizes and numbers of the triggers are variable as in the physical world. We propose an efficient backdoor defense based on evolutionary trigger detection and lightweight model repair. In the first phase of our method, CAM-focus Evolutionary Trigger Filter (CETF) is proposed for trigger detection. CETF is an effective sample-preprocessing based method with the evolutionary algorithm, and our experimental results show that CETF not only distinguishes the images with triggers accurately from the clean images, but also can be widely used in practice for its simplicity and stability in different backdoor attack situations. In the second phase of our method, we leverage several lightweight unlearning methods with the trigger detected by CETF for model repair, which also constructively demonstrate the underlying correlation of the backdoor with Batch Normalization layers. Source code will be published after accepted.
Abstract:The competition focuses on Multiparty Multiobjective Optimization Problems (MPMOPs), where multiple decision makers have conflicting objectives, as seen in applications like UAV path planning. Despite their importance, MPMOPs remain understudied in comparison to conventional multiobjective optimization. The competition aims to address this gap by encouraging researchers to explore tailored modeling approaches. The test suite comprises two parts: problems with common Pareto optimal solutions and Biparty Multiobjective UAV Path Planning (BPMO-UAVPP) problems with unknown solutions. Optimization algorithms for the first part are evaluated using Multiparty Inverted Generational Distance (MPIGD), and the second part is evaluated using Multiparty Hypervolume (MPHV) metrics. The average algorithm ranking across all problems serves as a performance benchmark.
Abstract:Many real-world optimization problems possess dynamic characteristics. Evolutionary dynamic optimization algorithms (EDOAs) aim to tackle the challenges associated with dynamic optimization problems. Looking at the existing works, the results reported for a given EDOA can sometimes be considerably different. This issue occurs because the source codes of many EDOAs, which are usually very complex algorithms, have not been made publicly available. Indeed, the complexity of components and mechanisms used in many EDOAs makes their re-implementation error-prone. In this paper, to assist researchers in performing experiments and comparing their algorithms against several EDOAs, we develop an open-source MATLAB platform for EDOAs, called Evolutionary Dynamic Optimization LABoratory (EDOLAB). This platform also contains an education module that can be used for educational purposes. In the education module, the user can observe a) a 2-dimensional problem space and how its morphology changes after each environmental change, b) the behaviors of individuals over time, and c) how the EDOA reacts to environmental changes and tries to track the moving optimum. In addition to being useful for research and education purposes, EDOLAB can also be used by practitioners to solve their real-world problems. The current version of EDOLAB includes 25 EDOAs and three fully-parametric benchmark generators. The MATLAB source code for EDOLAB is publicly available and can be accessed from [https://github.com/EDOLAB-platform/EDOLAB-MATLAB].
Abstract:In the field of evolutionary multiobjective optimization, the decision maker (DM) concerns conflicting objectives. In the real-world applications, there usually exist more than one DM and each DM concerns parts of these objectives. Multiparty multiobjective optimization problems (MPMOPs) are proposed to depict the MOP with multiple decision makers involved, where each party concerns about certain some objectives of all. However, in the evolutionary computation field, there is not much attention paid on MPMOPs. This paper constructs a series of MPMOPs based on distance minimization problems (DMPs), whose Pareto optimal solutions can be vividly visualized. To address MPMOPs, the new proposed algorithm OptMPNDS3 uses the multiparty initializing method to initialize the population and takes JADE2 operator to generate the offsprings. OptMPNDS3 is compared with OptAll, OptMPNDS and OptMPNDS2 on the problem suite. The result shows that OptMPNDS3 is strongly comparable to other algorithms
Abstract:The security issues in DNNs, such as adversarial examples, have attracted much attention. Adversarial examples refer to the examples which are capable to induce the DNNs return completely predictions by introducing carefully designed perturbations. Obviously, adversarial examples bring great security risks to the development of deep learning. Recently, Some defense approaches against adversarial examples have been proposed, however, in our opinion, the performance of these approaches are still limited. In this paper, we propose a new ensemble defense approach named the Negative Correlation Ensemble (NCEn), which achieves compelling results by introducing gradient directions and gradient magnitudes of each member in the ensemble negatively correlated and at the same time, reducing the transferability of adversarial examples among them. Extensive experiments have been conducted, and the results demonstrate that NCEn can improve the adversarial robustness of ensembles effectively.