Department of Computer Science, Cornell Tech
Abstract:Reasoning encompasses two typical types: deductive reasoning and inductive reasoning. Despite extensive research into the reasoning capabilities of Large Language Models (LLMs), most studies have failed to rigorously differentiate between inductive and deductive reasoning, leading to a blending of the two. This raises an essential question: In LLM reasoning, which poses a greater challenge - deductive or inductive reasoning? While the deductive reasoning capabilities of LLMs, (i.e. their capacity to follow instructions in reasoning tasks), have received considerable attention, their abilities in true inductive reasoning remain largely unexplored. To investigate into the true inductive reasoning capabilities of LLMs, we propose a novel framework, SolverLearner. This framework enables LLMs to learn the underlying function (i.e., $y = f_w(x)$), that maps input data points $(x)$ to their corresponding output values $(y)$, using only in-context examples. By focusing on inductive reasoning and separating it from LLM-based deductive reasoning, we can isolate and investigate inductive reasoning of LLMs in its pure form via SolverLearner. Our observations reveal that LLMs demonstrate remarkable inductive reasoning capabilities through SolverLearner, achieving near-perfect performance with ACC of 1 in most cases. Surprisingly, despite their strong inductive reasoning abilities, LLMs tend to relatively lack deductive reasoning capabilities, particularly in tasks involving ``counterfactual'' reasoning.
Abstract:Machine learning (ML), driven by prominent paradigms such as centralized and federated learning, has made significant progress in various critical applications ranging from autonomous driving to face recognition. However, its remarkable success has been accompanied by various attacks. Recently, the model hijacking attack has shown that ML models can be hijacked to execute tasks different from their original tasks, which increases both accountability and parasitic computational risks. Nevertheless, thus far, this attack has only focused on centralized learning. In this work, we broaden the scope of this attack to the federated learning domain, where multiple clients collaboratively train a global model without sharing their data. Specifically, we present HijackFL, the first-of-its-kind hijacking attack against the global model in federated learning. The adversary aims to force the global model to perform a different task (called hijacking task) from its original task without the server or benign client noticing. To accomplish this, unlike existing methods that use data poisoning to modify the target model's parameters, HijackFL searches for pixel-level perturbations based on their local model (without modifications) to align hijacking samples with the original ones in the feature space. When performing the hijacking task, the adversary applies these cloaks to the hijacking samples, compelling the global model to identify them as original samples and predict them accordingly. We conduct extensive experiments on four benchmark datasets and three popular models. Empirical results demonstrate that its attack performance outperforms baselines. We further investigate the factors that affect its performance and discuss possible defenses to mitigate its impact.
Abstract:Multi-turn dialogues are a key interaction method between humans and Large Language Models (LLMs), as conversations extend over multiple rounds, keeping LLMs' high generation quality and low latency is a challenge. Mainstream LLMs can be grouped into two categories based on masking strategy: causal LLM and prefix LLM. Several works have demonstrated that prefix LLMs tend to outperform causal ones in scenarios that heavily depend on historical context such as multi-turn dialogues or in-context learning, thanks to their bidirectional attention on prefix sequences. However, prefix LLMs have an inherent inefficient training problem in multi-turn dialogue datasets. In addition, the attention mechanism of prefix LLM makes it unable to reuse Key-Value Cache (KV Cache) across dialogue rounds to reduce generation latency. In this paper, we propose a novel masking scheme called Intermittent Semi-working Mask (ISM) to address these problems. Specifically, we apply alternate bidirectional and unidirectional attention on queries and answers in the dialogue history. In this way, ISM is able to maintain the high quality of prefix LLM and low generation latency of causal LLM, simultaneously. Extensive experiments illustrate that our ISM achieves significant performance.
Abstract:Recent advancements have significantly improved automated task-solving capabilities using autonomous agents powered by large language models (LLMs). However, most LLM-based agents focus on dialogue, programming, or specialized domains, leaving gaps in addressing generative AI safety tasks. These gaps are primarily due to the challenges posed by LLM hallucinations and the lack of clear guidelines. In this paper, we propose Atlas, an advanced LLM-based multi-agent framework that integrates an efficient fuzzing workflow to target generative AI models, specifically focusing on jailbreak attacks against text-to-image (T2I) models with safety filters. Atlas utilizes a vision-language model (VLM) to assess whether a prompt triggers the T2I model's safety filter. It then iteratively collaborates with both LLM and VLM to generate an alternative prompt that bypasses the filter. Atlas also enhances the reasoning abilities of LLMs in attack scenarios by leveraging multi-agent communication, in-context learning (ICL) memory mechanisms, and the chain-of-thought (COT) approach. Our evaluation demonstrates that Atlas successfully jailbreaks several state-of-the-art T2I models in a black-box setting, which are equipped with multi-modal safety filters. In addition, Atlas outperforms existing methods in both query efficiency and the quality of the generated images.
Abstract:Most existing membership inference attacks (MIAs) utilize metrics (e.g., loss) calculated on the model's final state, while recent advanced attacks leverage metrics computed at various stages, including both intermediate and final stages, throughout the model training. Nevertheless, these attacks often process multiple intermediate states of the metric independently, ignoring their time-dependent patterns. Consequently, they struggle to effectively distinguish between members and non-members who exhibit similar metric values, particularly resulting in a high false-positive rate. In this study, we delve deeper into the new membership signals in the black-box scenario. We identify a new, more integrated membership signal: the Pattern of Metric Sequence, derived from the various stages of model training. We contend that current signals provide only partial perspectives of this new signal: the new one encompasses both the model's multiple intermediate and final states, with a greater emphasis on temporal patterns among them. Building upon this signal, we introduce a novel attack method called Sequential-metric based Membership Inference Attack (SeqMIA). Specifically, we utilize knowledge distillation to obtain a set of distilled models representing various stages of the target model's training. We then assess multiple metrics on these distilled models in chronological order, creating distilled metric sequence. We finally integrate distilled multi-metric sequences as a sequential multiformat and employ an attention-based RNN attack model for inference. Empirical results show SeqMIA outperforms all baselines, especially can achieve an order of magnitude improvement in terms of TPR @ 0.1% FPR. Furthermore, we delve into the reasons why this signal contributes to SeqMIA's high attack performance, and assess various defense mechanisms against SeqMIA.
Abstract:Personality is a fundamental construct in psychology, reflecting an individual's behavior, thinking, and emotional patterns. Previous researches have made some progress in personality detection, primarily by utilizing the whole text to predict personality. However, these studies generally tend to overlook psychological knowledge: they rarely apply the well-established correlations between emotion regulation and personality. Based on this, we propose a new personality detection method called EERPD. This method introduces the use of emotion regulation, a psychological concept highly correlated with personality, for personality prediction. By combining this feature with emotion features, it retrieves few-shot examples and provides process CoTs for inferring labels from text. This approach enhances the understanding of LLM for personality within text and improves the performance in personality detection. Experimental results demonstrate that EERPD significantly enhances the accuracy and robustness of personality detection, outperforming previous SOTA by 15.05/4.29 in average F1 on the two benchmark datasets.
Abstract:Text attribute person search aims to find specific pedestrians through given textual attributes, which is very meaningful in the scene of searching for designated pedestrians through witness descriptions. The key challenge is the significant modality gap between textual attributes and images. Previous methods focused on achieving explicit representation and alignment through unimodal pre-trained models. Nevertheless, the absence of inter-modality correspondence in these models may lead to distortions in the local information of intra-modality. Moreover, these methods only considered the alignment of inter-modality and ignored the differences between different attribute categories. To mitigate the above problems, we propose an Attribute-Aware Implicit Modality Alignment (AIMA) framework to learn the correspondence of local representations between textual attributes and images and combine global representation matching to narrow the modality gap. Firstly, we introduce the CLIP model as the backbone and design prompt templates to transform attribute combinations into structured sentences. This facilitates the model's ability to better understand and match image details. Next, we design a Masked Attribute Prediction (MAP) module that predicts the masked attributes after the interaction of image and masked textual attribute features through multi-modal interaction, thereby achieving implicit local relationship alignment. Finally, we propose an Attribute-IoU Guided Intra-Modal Contrastive (A-IoU IMC) loss, aligning the distribution of different textual attributes in the embedding space with their IoU distribution, achieving better semantic arrangement. Extensive experiments on the Market-1501 Attribute, PETA, and PA100K datasets show that the performance of our proposed method significantly surpasses the current state-of-the-art methods.
Abstract:Discovering causal relationships from observational data, particularly in the presence of latent variables, poses a challenging problem. While current local structure learning methods have proven effective and efficient when the focus lies solely on the local relationships of a target variable, they operate under the assumption of causal sufficiency. This assumption implies that all the common causes of the measured variables are observed, leaving no room for latent variables. Such a premise can be easily violated in various real-world applications, resulting in inaccurate structures that may adversely impact downstream tasks. In light of this, our paper delves into the primary investigation of locally identifying potential parents and children of a target from observational data that may include latent variables. Specifically, we harness the causal information from m-separation and V-structures to derive theoretical consistency results, effectively bridging the gap between global and local structure learning. Together with the newly developed stop rules, we present a principled method for determining whether a variable is a direct cause or effect of a target. Further, we theoretically demonstrate the correctness of our approach under the standard causal Markov and faithfulness conditions, with infinite samples. Experimental results on both synthetic and real-world data validate the effectiveness and efficiency of our approach.
Abstract:Text-based Person Retrieval (TPR) aims to retrieve person images that match the description given a text query. The performance improvement of the TPR model relies on high-quality data for supervised training. However, it is difficult to construct a large-scale, high-quality TPR dataset due to expensive annotation and privacy protection. Recently, Large Language Models (LLMs) have approached or even surpassed human performance on many NLP tasks, creating the possibility to expand high-quality TPR datasets. This paper proposes an LLM-based Data Augmentation (LLM-DA) method for TPR. LLM-DA uses LLMs to rewrite the text in the current TPR dataset, achieving high-quality expansion of the dataset concisely and efficiently. These rewritten texts are able to increase the diversity of vocabulary and sentence structure while retaining the original key concepts and semantic information. In order to alleviate the hallucinations of LLMs, LLM-DA introduces a Text Faithfulness Filter (TFF) to filter out unfaithful rewritten text. To balance the contributions of original text and augmented text, a Balanced Sampling Strategy (BSS) is proposed to control the proportion of original text and augmented text used for training. LLM-DA is a plug-and-play method that can be easily integrated into various TPR models. Comprehensive experiments on three TPR benchmarks show that LLM-DA can improve the retrieval performance of current TPR models.
Abstract:In customer service technical support, swiftly and accurately retrieving relevant past issues is critical for efficiently resolving customer inquiries. The conventional retrieval methods in retrieval-augmented generation (RAG) for large language models (LLMs) treat a large corpus of past issue tracking tickets as plain text, ignoring the crucial intra-issue structure and inter-issue relations, which limits performance. We introduce a novel customer service question-answering method that amalgamates RAG with a knowledge graph (KG). Our method constructs a KG from historical issues for use in retrieval, retaining the intra-issue structure and inter-issue relations. During the question-answering phase, our method parses consumer queries and retrieves related sub-graphs from the KG to generate answers. This integration of a KG not only improves retrieval accuracy by preserving customer service structure information but also enhances answering quality by mitigating the effects of text segmentation. Empirical assessments on our benchmark datasets, utilizing key retrieval (MRR, Recall@K, NDCG@K) and text generation (BLEU, ROUGE, METEOR) metrics, reveal that our method outperforms the baseline by 77.6% in MRR and by 0.32 in BLEU. Our method has been deployed within LinkedIn's customer service team for approximately six months and has reduced the median per-issue resolution time by 28.6%.