Abstract:Recent advances in instruction-based image editing have shown remarkable progress. However, existing methods remain limited to relatively simple editing operations, hindering real-world applications that require complex and compositional instructions. In this work, we address these limitations from the perspectives of architectural design, data, and evaluation protocols. Specifically, we identify two key challenges in current models: insufficient instruction compliance and background inconsistency. To this end, we propose MCIE-E1, a Multimodal Large Language Model-Driven Complex Instruction Image Editing method that integrates two key modules: a spatial-aware cross-attention module and a background-consistent cross-attention module. The former enhances instruction-following capability by explicitly aligning semantic instructions with spatial regions through spatial guidance during the denoising process, while the latter preserves features in unedited regions to maintain background consistency. To enable effective training, we construct a dedicated data pipeline to mitigate the scarcity of complex instruction-based image editing datasets, combining fine-grained automatic filtering via a powerful MLLM with rigorous human validation. Finally, to comprehensively evaluate complex instruction-based image editing, we introduce CIE-Bench, a new benchmark with two new evaluation metrics. Experimental results on CIE-Bench demonstrate that MCIE-E1 consistently outperforms previous state-of-the-art methods in both quantitative and qualitative assessments, achieving a 23.96% improvement in instruction compliance.
Abstract:Recent generative models have achieved remarkable progress in image editing. However, existing systems and benchmarks remain largely text-guided. In contrast, human communication is inherently multimodal, where visual instructions such as sketches efficiently convey spatial and structural intent. To address this gap, we introduce VIBE, the Visual Instruction Benchmark for Image Editing with a three-level interaction hierarchy that captures deictic grounding, morphological manipulation, and causal reasoning. Across these levels, we curate high-quality and diverse test cases that reflect progressively increasing complexity in visual instruction following. We further propose a robust LMM-as-a-judge evaluation framework with task-specific metrics to enable scalable and fine-grained assessment. Through a comprehensive evaluation of 17 representative open-source and proprietary image editing models, we find that proprietary models exhibit early-stage visual instruction-following capabilities and consistently outperform open-source models. However, performance degrades markedly with increasing task difficulty even for the strongest systems, highlighting promising directions for future research.
Abstract:Diffusion generative models have become the standard for producing high-quality, coherent video content, yet their slow inference speeds and high computational demands hinder practical deployment. Although both quantization and sparsity can independently accelerate inference while maintaining generation quality, naively combining these techniques in existing training-free approaches leads to significant performance degradation due to the lack of joint optimization. We introduce FPSAttention, a novel training-aware co-design of FP8 quantization and sparsity for video generation, with a focus on the 3D bi-directional attention mechanism. Our approach features three key innovations: 1) A unified 3D tile-wise granularity that simultaneously supports both quantization and sparsity; 2) A denoising step-aware strategy that adapts to the noise schedule, addressing the strong correlation between quantization/sparsity errors and denoising steps; 3) A native, hardware-friendly kernel that leverages FlashAttention and is implemented with optimized Hopper architecture features for highly efficient execution. Trained on Wan2.1's 1.3B and 14B models and evaluated on the VBench benchmark, FPSAttention achieves a 7.09x kernel speedup for attention operations and a 4.96x end-to-end speedup for video generation compared to the BF16 baseline at 720p resolution-without sacrificing generation quality.