The focus of this study is on Unsupervised Continual Learning (UCL), as it presents an alternative to Supervised Continual Learning which needs high-quality manual labeled data. The experiments under the UCL paradigm indicate a phenomenon where the results on the first few tasks are suboptimal. This phenomenon can render the model inappropriate for practical applications. To address this issue, after analyzing the phenomenon and identifying the lack of diversity as a vital factor, we propose a method named Codebook for Unsupervised Continual Learning (CUCL) which promotes the model to learn discriminative features to complete the class boundary. Specifically, we first introduce a Product Quantization to inject diversity into the representation and apply a cross quantized contrastive loss between the original representation and the quantized one to capture discriminative information. Then, based on the quantizer, we propose an effective Codebook Rehearsal to address catastrophic forgetting. This study involves conducting extensive experiments on CIFAR100, TinyImageNet, and MiniImageNet benchmark datasets. Our method significantly boosts the performances of supervised and unsupervised methods. For instance, on TinyImageNet, our method led to a relative improvement of 12.76% and 7% when compared with Simsiam and BYOL, respectively.
Large language models (LLMs) have recently demonstrated remarkable capabilities to comprehend human intentions, engage in reasoning, and design planning-like behavior. To further unleash the power of LLMs to accomplish complex tasks, there is a growing trend to build agent framework that equips LLMs, such as ChatGPT, with tool-use abilities to connect with massive external APIs. In this work, we introduce ModelScope-Agent, a general and customizable agent framework for real-world applications, based on open-source LLMs as controllers. It provides a user-friendly system library, with customizable engine design to support model training on multiple open-source LLMs, while also enabling seamless integration with both model APIs and common APIs in a unified way. To equip the LLMs with tool-use abilities, a comprehensive framework has been proposed spanning over tool-use data collection, tool retrieval, tool registration, memory control, customized model training, and evaluation for practical real-world applications. Finally, we showcase ModelScopeGPT, a real-world intelligent assistant of ModelScope Community based on the ModelScope-Agent framework, which is able to connect open-source LLMs with more than 1000 public AI models and localized community knowledge in ModelScope. The ModelScope-Agent library\footnote{https://github.com/modelscope/modelscope-agent} and online demo\footnote{https://modelscope.cn/studios/damo/ModelScopeGPT/summary} are now publicly available.
Recent advancement in personalized image generation have unveiled the intriguing capability of pre-trained text-to-image models on learning identity information from a collection of portrait images. However, existing solutions can be vulnerable in producing truthful details, and usually suffer from several defects such as (i) The generated face exhibit its own unique characteristics, \ie facial shape and facial feature positioning may not resemble key characteristics of the input, and (ii) The synthesized face may contain warped, blurred or corrupted regions. In this paper, we present FaceChain, a personalized portrait generation framework that combines a series of customized image-generation model and a rich set of face-related perceptual understanding models (\eg, face detection, deep face embedding extraction, and facial attribute recognition), to tackle aforementioned challenges and to generate truthful personalized portraits, with only a handful of portrait images as input. Concretely, we inject several SOTA face models into the generation procedure, achieving a more efficient label-tagging, data-processing, and model post-processing compared to previous solutions, such as DreamBooth ~\cite{ruiz2023dreambooth} , InstantBooth ~\cite{shi2023instantbooth} , or other LoRA-only approaches ~\cite{hu2021lora} . Through the development of FaceChain, we have identified several potential directions to accelerate development of Face/Human-Centric AIGC research and application. We have designed FaceChain as a framework comprised of pluggable components that can be easily adjusted to accommodate different styles and personalized needs. We hope it can grow to serve the burgeoning needs from the communities. FaceChain is open-sourced under Apache-2.0 license at \url{https://github.com/modelscope/facechain}.
We study the problem of collaboratively learning least squares estimates for $m$ agents. Each agent observes a different subset of the features$\unicode{x2013}$e.g., containing data collected from sensors of varying resolution. Our goal is to determine how to coordinate the agents in order to produce the best estimator for each agent. We propose a distributed, semi-supervised algorithm Collab, consisting of three steps: local training, aggregation, and distribution. Our procedure does not require communicating the labeled data, making it communication efficient and useful in settings where the labeled data is inaccessible. Despite this handicap, our procedure is nearly asymptotically local minimax optimal$\unicode{x2013}$even among estimators allowed to communicate the labeled data such as imputation methods. We test our method on real and synthetic data.
The use of the convolutional neural network based prior in imaging inverse problems has become increasingly popular. Current state-of-the-art methods, however, can easily result in severe overfitting, which makes a number of early stopping techniques necessary to eliminate the overfitting problem. To motivate our work, we review some existing approaches to image priors. We find that the deep image prior in combined with the handcrafted prior has an outstanding performance in terms of interpretability and representability. We propose a multi-code deep image prior, a multiple latent codes variant of the deep image prior, which can be utilized to eliminate overfitting and is also robust to the different numbers of the latent codes. Due to the non-differentiability of the handcrafted prior, we use the alternative direction method of multipliers (ADMM) algorithm. We compare the performance of the proposed method on an image denoising problem and a highly ill-posed CT reconstruction problem against the existing state-of-the-art methods, including PnP-DIP, DIP-VBTV and ADMM DIP-WTV methods. For the CelebA dataset denoising, we obtain 1.46 dB peak signal to noise ratio improvement against all compared methods. For the CT reconstruction, the corresponding average improvement of three test images is 4.3 dB over DIP, and 1.7 dB over ADMM DIP-WTV, and 1.2 dB over PnP-DIP along with a significant improvement in the structural similarity index.
We present a machine learning (ML) framework for large-scale dynamical simulations of charge density wave (CDW) states. The charge modulation in a CDW state is often accompanied by a concomitant structural distortion, and the adiabatic evolution of a CDW order is governed by the dynamics of the lattice distortion. Calculation of the electronic contribution to the driving forces, however, is computationally very expensive for large systems. Assuming the principle of locality for electron systems, a neural-network model is developed to accurately and efficiently predict local electronic forces with input from neighborhood configurations. Importantly, the ML model makes possible a linear complexity algorithm for dynamical simulations of CDWs. As a demonstration, we apply our approach to investigate the phase ordering dynamics of the Holstein model, a canonical system of CDW order. Our large-scale simulations uncover an intriguing growth of the CDW domains that deviates significantly from the expected Allen-Cahn law for phase ordering of Ising-type order parameter field. This anomalous domain-growth could be attributed to the complex structure of domain-walls in this system. Our work highlights the promising potential of ML-based force-field models for dynamical simulations of functional electronic materials.
Predicting the behaviors of pedestrian crowds is of critical importance for a variety of real-world problems. Data driven modeling, which aims to learn the mathematical models from observed data, is a promising tool to construct models that can make accurate predictions of such systems. In this work, we present a data-driven modeling approach based on the ODE-Net framework, for constructing continuous-time models of crowd dynamics. We discuss some challenging issues in applying the ODE-Net method to such problems, which are primarily associated with the dimensionality of the underlying crowd system, and we propose to address these issues by incorporating the social-force concept in the ODE-Net framework. Finally application examples are provided to demonstrate the performance of the proposed method.
Random matrix theory has become a widely useful tool in high-dimensional statistics and theoretical machine learning. However, random matrix theory is largely focused on the proportional asymptotics in which the number of columns grows proportionally to the number of rows of the data matrix. This is not always the most natural setting in statistics where columns correspond to covariates and rows to samples. With the objective to move beyond the proportional asymptotics, we revisit ridge regression ($\ell_2$-penalized least squares) on i.i.d. data $(x_i, y_i)$, $i\le n$, where $x_i$ is a feature vector and $y_i = \beta^\top x_i +\epsilon_i \in\mathbb{R}$ is a response. We allow the feature vector to be high-dimensional, or even infinite-dimensional, in which case it belongs to a separable Hilbert space, and assume either $z_i := \Sigma^{-1/2}x_i$ to have i.i.d. entries, or to satisfy a certain convex concentration property. Within this setting, we establish non-asymptotic bounds that approximate the bias and variance of ridge regression in terms of the bias and variance of an `equivalent' sequence model (a regression model with diagonal design matrix). The approximation is up to multiplicative factors bounded by $(1\pm \Delta)$ for some explicitly small $\Delta$. Previously, such an approximation result was known only in the proportional regime and only up to additive errors: in particular, it did not allow to characterize the behavior of the excess risk when this converges to $0$. Our general theory recovers earlier results in the proportional regime (with better error rates). As a new application, we obtain a completely explicit and sharp characterization of ridge regression for Hilbert covariates with regularly varying spectrum. Finally, we analyze the overparametrized near-interpolation setting and obtain sharp `benign overfitting' guarantees.
After the outbreak of COVID-19, mask detection, as the most convenient and effective means of prevention, plays a crucial role in epidemic prevention and control. An excellent automatic real-time mask detection system can reduce a lot of work pressure for relevant staff. However, by analyzing the existing mask detection approaches, we find that they are mostly resource-intensive and do not achieve a good balance between speed and accuracy. And there is no perfect face mask dataset at present. In this paper, we propose a new architecture for mask detection. Our system uses SSD as the mask locator and classifier, and further replaces VGG-16 with MobileNetV2 to extract the features of the image and reduce a lot of parameters. Therefore, our system can be deployed on embedded devices. Transfer learning methods are used to transfer pre-trained models from other domains to our model. Data enhancement methods in our system such as MixUp effectively prevent overfitting. It also effectively reduces the dependence on large-scale datasets. By doing experiments in practical scenarios, the results demonstrate that our system performed well in real-time mask detection.
The construction of most supervised learning datasets revolves around collecting multiple labels for each instance, then aggregating the labels to form a type of ``gold-standard.''. We question the wisdom of this pipeline by developing a (stylized) theoretical model of this process and analyzing its statistical consequences, showing how access to non-aggregated label information can make training well-calibrated models easier or -- in some cases -- even feasible, whereas it is impossible with only gold-standard labels. The entire story, however, is subtle, and the contrasts between aggregated and fuller label information depend on the particulars of the problem, where estimators that use aggregated information exhibit robust but slower rates of convergence, while estimators that can effectively leverage all labels converge more quickly if they have fidelity to (or can learn) the true labeling process. The theory we develop in the stylized model makes several predictions for real-world datasets, including when non-aggregate labels should improve learning performance, which we test to corroborate the validity of our predictions.