Department of Computer Science University of Manchester UK
Abstract:The rapid advancement of large language model(LLM) technology has facilitated its integration into various domains of professional and daily life. However, the persistent challenge of LLM hallucination has emerged as a critical limitation, significantly compromising the reliability and trustworthiness of AI-generated content. This challenge has garnered significant attention within the scientific community, prompting extensive research efforts in hallucination detection and mitigation strategies. Current methodological frameworks reveal a critical limitation: traditional uncertainty quantification approaches demonstrate effectiveness primarily within conventional question-answering paradigms, yet exhibit notable deficiencies when confronted with non-canonical or adversarial questioning strategies. This performance gap raises substantial concerns regarding the dependability of LLM responses in real-world applications requiring robust critical thinking capabilities. This study aims to fill this gap by proposing an uncertainty quantification scenario in the task of generating with multiple facts. We have meticulously constructed a set of trap questions contained with fake names. Based on this scenario, we innovatively propose a novel and robust uncertainty quantification method(RU). A series of experiments have been conducted to verify its effectiveness. The results show that the constructed set of trap questions performs excellently. Moreover, when compared with the baseline methods on four different models, our proposed method has demonstrated great performance, with an average increase of 0.1-0.2 in ROCAUC values compared to the best performing baseline method, providing new sights and methods for addressing the hallucination issue of LLMs.
Abstract:While Vision-Language-Action models (VLAs) are rapidly advancing towards generalist robot policies, it remains difficult to quantitatively understand their limits and failure modes. To address this, we introduce a comprehensive benchmark called VLA-Arena. We propose a novel structured task design framework to quantify difficulty across three orthogonal axes: (1) Task Structure, (2) Language Command, and (3) Visual Observation. This allows us to systematically design tasks with fine-grained difficulty levels, enabling a precise measurement of model capability frontiers. For Task Structure, VLA-Arena's 170 tasks are grouped into four dimensions: Safety, Distractor, Extrapolation, and Long Horizon. Each task is designed with three difficulty levels (L0-L2), with fine-tuning performed exclusively on L0 to assess general capability. Orthogonal to this, language (W0-W4) and visual (V0-V4) perturbations can be applied to any task to enable a decoupled analysis of robustness. Our extensive evaluation of state-of-the-art VLAs reveals several critical limitations, including a strong tendency toward memorization over generalization, asymmetric robustness, a lack of consideration for safety constraints, and an inability to compose learned skills for long-horizon tasks. To foster research addressing these challenges and ensure reproducibility, we provide the complete VLA-Arena framework, including an end-to-end toolchain from task definition to automated evaluation and the VLA-Arena-S/M/L datasets for fine-tuning. Our benchmark, data, models, and leaderboard are available at https://vla-arena.github.io.
Abstract:Drug-target interaction (DTI) prediction is of great significance for drug discovery and drug repurposing. With the accumulation of a large volume of valuable data, data-driven methods have been increasingly harnessed to predict DTIs, reducing costs across various dimensions. Therefore, this paper proposes a $\textbf{L}$arge $\textbf{L}$anguage $\textbf{M}$odel and $\textbf{M}$ulti-$\textbf{M}$odel data co-powered $\textbf{D}$rug $\textbf{T}$arget $\textbf{I}$nteraction prediction framework, named LLM$^3$-DTI. LLM$^3$-DTI constructs multi-modal data embedding to enhance DTI prediction performance. In this framework, the text semantic embeddings of drugs and targets are encoded by a domain-specific LLM. To effectively align and fuse multi-modal embedding. We propose the dual cross-attention mechanism and the TSFusion module. Finally, these multi-modal data are utilized for the DTI task through an output network. The experimental results indicate that LLM$^3$-DTI can proficiently identify validated DTIs, surpassing the performance of the models employed for comparison across diverse scenarios. Consequently, LLM$^3$-DTI is adept at fulfilling the task of DTI prediction with excellence. The data and code are available at https://github.com/chaser-gua/LLM3DTI.
Abstract:In this paper, we propose a unified localization framework (called UNILocPro) that integrates model-based localization and channel charting (CC) for mixed line-of-sight (LoS)/non-line-of-sight (NLoS) scenarios. Specifically, based on LoS/NLoS identification, an adaptive activation between the model-based and CC-based methods is conducted. Aiming for unsupervised learning, information obtained from the model-based method is utilized to train the CC model, where a pairwise distance loss (involving a new dissimilarity metric design), a triplet loss (if timestamps are available), a LoS-based loss, and an optimal transport (OT)-based loss are jointly employed such that the global geometry can be well preserved. To reduce the training complexity of UNILocPro, we propose a low-complexity implementation (called UNILoc), where the CC model is trained with self-generated labels produced by a single pre-training OT transformation, which avoids iterative Sinkhorn updates involved in the OT-based loss computation. Extensive numerical experiments demonstrate that the proposed unified frameworks achieve significantly improved positioning accuracy compared to both model-based and CC-based methods. Notably, UNILocPro with timestamps attains performance on par with fully-supervised fingerprinting despite operating without labelled training data. It is also shown that the low-complexity UNILoc can substantially reduce training complexity with only marginal performance degradation.




Abstract:Multi-modal Large Language Models (MLLMs) have gained significant attention in both academia and industry for their capabilities in handling multi-modal tasks. However, these models face challenges in mathematical geometric reasoning due to the scarcity of high-quality geometric data. To address this issue, synthetic geometric data has become an essential strategy. Current methods for generating synthetic geometric data involve rephrasing or expanding existing problems and utilizing predefined rules and templates to create geometric images and problems. However, these approaches often produce data that lacks diversity or is prone to noise. Additionally, the geometric images synthesized by existing methods tend to exhibit limited variation and deviate significantly from authentic geometric diagrams. To overcome these limitations, we propose GeoFM, a novel method for synthesizing geometric data. GeoFM uses formal languages to explore combinations of conditions within metric space, generating high-fidelity geometric problems that differ from the originals while ensuring correctness through a symbolic engine. Experimental results show that our synthetic data significantly outperforms existing methods. The model trained with our data surpass the proprietary GPT-4o model by 18.7\% on geometry problem-solving tasks in MathVista and by 16.5\% on GeoQA. Additionally, it exceeds the performance of a leading open-source model by 5.7\% on MathVista and by 2.7\% on GeoQA.
Abstract:Speech Language Models (SLMs) have made significant progress in spoken language understanding. Yet it remains unclear whether they can fully perceive non lexical vocal cues alongside spoken words, and respond with empathy that aligns with both emotional and contextual factors. Existing benchmarks typically evaluate linguistic, acoustic, reasoning, or dialogue abilities in isolation, overlooking the integration of these skills that is crucial for human-like, emotionally intelligent conversation. We present EchoMind, the first interrelated, multi-level benchmark that simulates the cognitive process of empathetic dialogue through sequential, context-linked tasks: spoken-content understanding, vocal-cue perception, integrated reasoning, and response generation. All tasks share identical and semantically neutral scripts that are free of explicit emotional or contextual cues, and controlled variations in vocal style are used to test the effect of delivery independent of the transcript. EchoMind is grounded in an empathy-oriented framework spanning 3 coarse and 12 fine-grained dimensions, encompassing 39 vocal attributes, and evaluated using both objective and subjective metrics. Testing 12 advanced SLMs reveals that even state-of-the-art models struggle with high-expressive vocal cues, limiting empathetic response quality. Analyses of prompt strength, speech source, and ideal vocal cue recognition reveal persistent weaknesses in instruction-following, resilience to natural speech variability, and effective use of vocal cues for empathy. These results underscore the need for SLMs that integrate linguistic content with diverse vocal cues to achieve truly empathetic conversational ability.




Abstract:Long-horizon agentic search requires iteratively exploring the web over long trajectories and synthesizing information across many sources, and is the foundation for enabling powerful applications like deep research systems. In this work, we show that popular agentic search frameworks struggle to scale to long trajectories primarily due to context limitations-they accumulate long, noisy content, hit context window and tool budgets, or stop early. Then, we introduce SLIM (Simple Lightweight Information Management), a simple framework that separates retrieval into distinct search and browse tools, and periodically summarizes the trajectory, keeping context concise while enabling longer, more focused searches. On long-horizon tasks, SLIM achieves comparable performance at substantially lower cost and with far fewer tool calls than strong open-source baselines across multiple base models. Specifically, with o3 as the base model, SLIM achieves 56% on BrowseComp and 31% on HLE, outperforming all open-source frameworks by 8 and 4 absolute points, respectively, while incurring 4-6x fewer tool calls. Finally, we release an automated fine-grained trajectory analysis pipeline and error taxonomy for characterizing long-horizon agentic search frameworks; SLIM exhibits fewer hallucinations than prior systems. We hope our analysis framework and simple tool design inform future long-horizon agents.
Abstract:Speech-to-speech large language models (SLLMs) are attracting increasing attention. Derived from text-based large language models (LLMs), SLLMs often exhibit degradation in knowledge and reasoning capabilities. We hypothesize that this limitation arises because current training paradigms for SLLMs fail to bridge the acoustic-semantic gap in the feature representation space. To address this issue, we propose EchoX, which leverages semantic representations and dynamically generates speech training targets. This approach integrates both acoustic and semantic learning, enabling EchoX to preserve strong reasoning abilities as a speech LLM. Experimental results demonstrate that EchoX, with about six thousand hours of training data, achieves advanced performance on multiple knowledge-based question-answering benchmarks. The project is available at https://github.com/FreedomIntelligence/EchoX.
Abstract:Vision-Language-Action (VLA) models have recently emerged as a powerful paradigm for robotic manipulation. Despite substantial progress enabled by large-scale pretraining and supervised fine-tuning (SFT), these models face two fundamental challenges: (i) the scarcity and high cost of large-scale human-operated robotic trajectories required for SFT scaling, and (ii) limited generalization to tasks involving distribution shift. Recent breakthroughs in Large Reasoning Models (LRMs) demonstrate that reinforcement learning (RL) can dramatically enhance step-by-step reasoning capabilities, raising a natural question: Can RL similarly improve the long-horizon step-by-step action planning of VLA? In this work, we introduce SimpleVLA-RL, an efficient RL framework tailored for VLA models. Building upon veRL, we introduce VLA-specific trajectory sampling, scalable parallelization, multi-environment rendering, and optimized loss computation. When applied to OpenVLA-OFT, SimpleVLA-RL achieves SoTA performance on LIBERO and even outperforms $\pi_0$ on RoboTwin 1.0\&2.0 with the exploration-enhancing strategies we introduce. SimpleVLA-RL not only reduces dependence on large-scale data and enables robust generalization, but also remarkably surpasses SFT in real-world tasks. Moreover, we identify a novel phenomenon ``pushcut'' during RL training, wherein the policy discovers previously unseen patterns beyond those seen in the previous training process. Github: https://github.com/PRIME-RL/SimpleVLA-RL
Abstract:Despite the significant advancements of self-play fine-tuning (SPIN), which can transform a weak large language model (LLM) into a strong one through competitive interactions between models of varying capabilities, it still faces challenges in the Text-to-SQL task. SPIN does not generate new information, and the large number of correct SQL queries produced by the opponent model during self-play reduces the main model's ability to generate accurate SQL queries. To address this challenge, we propose a new self-play fine-tuning method tailored for the Text-to-SQL task, called SPFT-SQL. Prior to self-play, we introduce a verification-based iterative fine-tuning approach, which synthesizes high-quality fine-tuning data iteratively based on the database schema and validation feedback to enhance model performance, while building a model base with varying capabilities. During the self-play fine-tuning phase, we propose an error-driven loss method that incentivizes incorrect outputs from the opponent model, enabling the main model to distinguish between correct SQL and erroneous SQL generated by the opponent model, thereby improving its ability to generate correct SQL. Extensive experiments and in-depth analyses on six open-source LLMs and five widely used benchmarks demonstrate that our approach outperforms existing state-of-the-art (SOTA) methods.