Abstract:Large language models (LLMs) are increasingly deployed over knowledge bases for efficient knowledge retrieval and question answering. However, LLMs can inadvertently answer beyond a user's permission scope, leaking sensitive content, thus making it difficult to deploy knowledge-base QA under fine-grained access control requirements. In this work, we identify a geometric regularity in intermediate activations: for the same query, representations induced by different permission scopes cluster distinctly and are readily separable. Building on this separability, we propose Activation-space Anchored Access Control (AAAC), a training-free framework for multi-class permission control. AAAC constructs an anchor bank, with one permission anchor per class, from a small offline sample set and requires no fine-tuning. At inference time, a multi-anchor steering mechanism redirects each query's activations toward the anchor-defined authorized region associated with the current user, thereby suppressing over-privileged generations by design. Finally, extensive experiments across three LLM families demonstrate that AAAC reduces permission violation rates by up to 86.5% and prompt-based attack success rates by 90.7%, while improving response usability with minor inference overhead compared to baselines.




Abstract:With the explosive growth of connected devices and emerging applications, current wireless networks are encountering unprecedented demands for massive user access, where the inter-user interference has become a critical challenge to maintaining high quality of service (QoS) in multi-user communication systems. To tackle this issue, we propose a bandwidth-efficient semantic communication paradigm termed Non-Orthogonal Codewords for Semantic Communication (NOC4SC), which enables simultaneous same-frequency transmission without spectrum spreading. By leveraging the Swin Transformer, the proposed NOC4SC framework enables each user to independently extract semantic features through a unified encoder-decoder architecture with shared network parameters across all users, which ensures that the user's data remains protected from unauthorized decoding. Furthermore, we introduce an adaptive NOC and SNR Modulation (NSM) block, which employs deep learning to dynamically regulate SNR and generate approximately orthogonal semantic features within distinct feature subspaces, thereby effectively mitigating inter-user interference. Extensive experiments demonstrate the proposed NOC4SC achieves comparable performance to the DeepJSCC-PNOMA and outperforms other multi-user SemCom baseline methods.
Abstract:With the evolution of 6G networks, modern communication systems are facing unprecedented demands for high reliability and low latency. However, conventional transport protocols are designed for bit-level reliability, failing to meet the semantic robustness requirements. To address this limitation, this paper proposes a novel Semantic Information Transport Protocol (SITP), which achieves TCP-level reliability and UDP level latency by verifying only packet headers while retaining potentially corrupted payloads for semantic decoding. Building upon SITP, a cross-layer analytical model is established to quantify packet-loss probability across the physical, data-link, network, transport, and application layers. The model provides a unified probabilistic formulation linking signal noise rate (SNR) and packet-loss rate, offering theoretical foundation into end-to-end semantic transmission. Furthermore, a cross-image feature interleaving mechanism is developed to mitigate consecutive burst losses by redistributing semantic features across multiple correlated images, thereby enhancing robustness in burst-fade channels. Extensive experiments show that SITP offers lower latency than TCP with comparable reliability at low SNRs, while matching UDP-level latency and delivering superior reconstruction quality. In addition, the proposed cross-image semantic interleaving mechanism further demonstrates its effectiveness in mitigating degradation caused by bursty packet losses.




Abstract:Aligning large-scale vision-language models (VLMs) for complex reasoning via reinforcement learning is often hampered by the limitations of existing policy optimization algorithms, such as static training schedules and the rigid, uniform clipping mechanism in Proximal Policy Optimization (PPO). In this work, we introduce Adaptive Curriculum Policy Optimization (ACPO), a novel framework that addresses these challenges through a dual-component adaptive learning strategy. First, ACPO employs a dynamic curriculum that orchestrates a principled transition from a stable, near on-policy exploration phase to an efficient, off-policy exploitation phase by progressively increasing sample reuse. Second, we propose an Advantage-Aware Adaptive Clipping (AAAC) mechanism that replaces the fixed clipping hyperparameter with dynamic, sample-wise bounds modulated by the normalized advantage of each token. This allows for more granular and robust policy updates, enabling larger gradients for high-potential samples while safeguarding against destructive ones. We conduct extensive experiments on a suite of challenging multimodal reasoning benchmarks, including MathVista, LogicVista, and MMMU-Pro. Results demonstrate that ACPO consistently outperforms strong baselines such as DAPO and PAPO, achieving state-of-the-art performance, accelerated convergence, and superior training stability.
Abstract:Large language models (LLMs) have shown impressive capabilities in handling complex tasks through long-chain reasoning. However, the extensive reasoning steps involved can significantly increase computational costs, posing challenges for real-world deployment. Recent efforts have focused on optimizing reasoning efficiency by shortening the Chain-of-Thought (CoT) reasoning processes through various approaches, such as length-aware prompt engineering, supervised fine-tuning on CoT data with variable lengths, and reinforcement learning with length penalties. Although these methods effectively reduce reasoning length, they still necessitate an initial reasoning phase. More recent approaches have attempted to integrate long-chain and short-chain reasoning abilities into a single model, yet they still rely on manual control to toggle between short and long CoT.In this work, we propose a novel approach that autonomously switches between short and long reasoning chains based on problem complexity. Our method begins with supervised fine-tuning of the base model to equip both long-chain and short-chain reasoning abilities. We then employ reinforcement learning to further balance short and long CoT generation while maintaining accuracy through two key strategies: first, integrating reinforcement learning with a long-short adaptive group-wise reward strategy to assess prompt complexity and provide corresponding rewards; second, implementing a logit-based reasoning mode switching loss to optimize the model's initial token choice, thereby guiding the selection of the reasoning type.Evaluations on mathematical datasets demonstrate that our model can dynamically switch between long-chain and short-chain reasoning modes without substantially sacrificing performance. This advancement enhances the practicality of reasoning in large language models for real-world applications.
Abstract:As Large Language Models (LLMs) rapidly advance, we introduce Hunyuan-TurboS, a novel large hybrid Transformer-Mamba Mixture of Experts (MoE) model. It synergistically combines Mamba's long-sequence processing efficiency with Transformer's superior contextual understanding. Hunyuan-TurboS features an adaptive long-short chain-of-thought (CoT) mechanism, dynamically switching between rapid responses for simple queries and deep "thinking" modes for complex problems, optimizing computational resources. Architecturally, this 56B activated (560B total) parameter model employs 128 layers (Mamba2, Attention, FFN) with an innovative AMF/MF block pattern. Faster Mamba2 ensures linear complexity, Grouped-Query Attention minimizes KV cache, and FFNs use an MoE structure. Pre-trained on 16T high-quality tokens, it supports a 256K context length and is the first industry-deployed large-scale Mamba model. Our comprehensive post-training strategy enhances capabilities via Supervised Fine-Tuning (3M instructions), a novel Adaptive Long-short CoT Fusion method, Multi-round Deliberation Learning for iterative improvement, and a two-stage Large-scale Reinforcement Learning process targeting STEM and general instruction-following. Evaluations show strong performance: overall top 7 rank on LMSYS Chatbot Arena with a score of 1356, outperforming leading models like Gemini-2.0-Flash-001 (1352) and o4-mini-2025-04-16 (1345). TurboS also achieves an average of 77.9% across 23 automated benchmarks. Hunyuan-TurboS balances high performance and efficiency, offering substantial capabilities at lower inference costs than many reasoning models, establishing a new paradigm for efficient large-scale pre-trained models.




Abstract:We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised learning. We randomly partition the image into two sets: visible patches and masked patches. The CAE architecture consists of: (i) an encoder that takes visible patches as input and outputs their latent representations, (ii) a latent context regressor that predicts the masked patch representations from the visible patch representations that are not updated in this regressor, (iii) a decoder that takes the estimated masked patch representations as input and makes predictions for the masked patches, and (iv) an alignment module that aligns the masked patch representation estimation with the masked patch representations computed from the encoder. In comparison to previous MIM methods that couple the encoding and decoding roles, e.g., using a single module in BEiT, our approach attempts to~\emph{separate the encoding role (content understanding) from the decoding role (making predictions for masked patches)} using different modules, improving the content understanding capability. In addition, our approach makes predictions from the visible patches to the masked patches in \emph{the latent representation space} that is expected to take on semantics. In addition, we present the explanations about why contrastive pretraining and supervised pretraining perform similarly and why MIM potentially performs better. We demonstrate the effectiveness of our CAE through superior transfer performance in downstream tasks: semantic segmentation, and object detection and instance segmentation.