Abstract:Reasoning Large Language Models (RLLMs) excelling in complex tasks present unique challenges for digital watermarking, as existing methods often disrupt logical coherence or incur high computational costs. Token-based watermarking techniques can corrupt the reasoning flow by applying pseudo-random biases, while semantic-aware approaches improve quality but introduce significant latency or require auxiliary models. This paper introduces ReasonMark, a novel watermarking framework specifically designed for reasoning-intensive LLMs. Our approach decouples generation into an undisturbed Thinking Phase and a watermarked Answering Phase. We propose a Criticality Score to identify semantically pivotal tokens from the reasoning trace, which are distilled into a Principal Semantic Vector (PSV). The PSV then guides a semantically-adaptive mechanism that modulates watermark strength based on token-PSV alignment, ensuring robustness without compromising logical integrity. Extensive experiments show ReasonMark surpasses state-of-the-art methods by reducing text Perplexity by 0.35, increasing translation BLEU score by 0.164, and raising mathematical accuracy by 0.67 points. These advancements are achieved alongside a 0.34% higher watermark detection AUC and stronger robustness to attacks, all with a negligible increase in latency. This work enables the traceable and trustworthy deployment of reasoning LLMs in real-world applications.
Abstract:Autonomous systems are increasingly deployed in open and dynamic environments -- from city streets to aerial and indoor spaces -- where perception models must remain reliable under sensor noise, environmental variation, and platform shifts. However, even state-of-the-art methods often degrade under unseen conditions, highlighting the need for robust and generalizable robot sensing. The RoboSense 2025 Challenge is designed to advance robustness and adaptability in robot perception across diverse sensing scenarios. It unifies five complementary research tracks spanning language-grounded decision making, socially compliant navigation, sensor configuration generalization, cross-view and cross-modal correspondence, and cross-platform 3D perception. Together, these tasks form a comprehensive benchmark for evaluating real-world sensing reliability under domain shifts, sensor failures, and platform discrepancies. RoboSense 2025 provides standardized datasets, baseline models, and unified evaluation protocols, enabling large-scale and reproducible comparison of robust perception methods. The challenge attracted 143 teams from 85 institutions across 16 countries, reflecting broad community engagement. By consolidating insights from 23 winning solutions, this report highlights emerging methodological trends, shared design principles, and open challenges across all tracks, marking a step toward building robots that can sense reliably, act robustly, and adapt across platforms in real-world environments.




Abstract:Recent advances in Generative AI (GAI) have led to new opportunities for creativity support. However, this technology has raised ethical concerns in the visual artists community. This paper explores how GAI can assist visual artists in developing original characters (OCs) while respecting their creative agency. We present ORIBA, an AI chatbot leveraging large language models (LLMs) to enable artists to role-play with their OCs, focusing on conceptualization (e.g., backstories) while leaving exposition (visual creation) to creators. Through a study with 14 artists, we found ORIBA motivated artists' imaginative engagement, developing multidimensional attributes and stronger bonds with OCs that inspire their creative process. Our contributions include design insights for AI systems that develop from artists' perspectives, demonstrating how LLMs can support cross-modal creativity while preserving creative agency in OC art. This paper highlights the potential of GAI as a neutral, non-visual support that strengthens existing creative practice, without infringing artistic exposition.
Abstract:Despite advancements in Multi-modal Large Language Models (MLLMs) for scene understanding, their performance on complex spatial reasoning tasks requiring mental simulation remains significantly limited. Current methods often rely on passive observation of spatial data, failing to internalize an active mental imagery process. To bridge this gap, we propose SpatialDreamer, a reinforcement learning framework that enables spatial reasoning through a closedloop process of active exploration, visual imagination via a world model, and evidence-grounded reasoning. To address the lack of fine-grained reward supervision in longhorizontal reasoning tasks, we propose Geometric Policy Optimization (GeoPO), which introduces tree-structured sampling and step-level reward estimation with geometric consistency constraints. Extensive experiments demonstrate that SpatialDreamer delivers highly competitive results across multiple challenging benchmarks, signifying a critical advancement in human-like active spatial mental simulation for MLLMs.




Abstract:As large language models (LLMs) scale, their inference incurs substantial computational resources, exposing them to energy-latency attacks, where crafted prompts induce high energy and latency cost. Existing attack methods aim to prolong output by delaying the generation of termination symbols. However, as the output grows longer, controlling the termination symbols through input becomes difficult, making these methods less effective. Therefore, we propose LoopLLM, an energy-latency attack framework based on the observation that repetitive generation can trigger low-entropy decoding loops, reliably compelling LLMs to generate until their output limits. LoopLLM introduces (1) a repetition-inducing prompt optimization that exploits autoregressive vulnerabilities to induce repetitive generation, and (2) a token-aligned ensemble optimization that aggregates gradients to improve cross-model transferability. Extensive experiments on 12 open-source and 2 commercial LLMs show that LoopLLM significantly outperforms existing methods, achieving over 90% of the maximum output length, compared to 20% for baselines, and improving transferability by around 40% to DeepSeek-V3 and Gemini 2.5 Flash.




Abstract:Bug bisection has been an important security task that aims to understand the range of software versions impacted by a bug, i.e., identifying the commit that introduced the bug. However, traditional patch-based bisection methods are faced with several significant barriers: For example, they assume that the bug-inducing commit (BIC) and the patch commit modify the same functions, which is not always true. They often rely solely on code changes, while the commit message frequently contains a wealth of vulnerability-related information. They are also based on simple heuristics (e.g., assuming the BIC initializes lines deleted in the patch) and lack any logical analysis of the vulnerability. In this paper, we make the observation that Large Language Models (LLMs) are well-positioned to break the barriers of existing solutions, e.g., comprehend both textual data and code in patches and commits. Unlike previous BIC identification approaches, which yield poor results, we propose a comprehensive multi-stage pipeline that leverages LLMs to: (1) fully utilize patch information, (2) compare multiple candidate commits in context, and (3) progressively narrow down the candidates through a series of down-selection steps. In our evaluation, we demonstrate that our approach achieves significantly better accuracy than the state-of-the-art solution by more than 38\%. Our results further confirm that the comprehensive multi-stage pipeline is essential, as it improves accuracy by 60\% over a baseline LLM-based bisection method.




Abstract:Most scientific materials compress reasoning, presenting conclusions while omitting the derivational chains that justify them. This compression hinders verification by lacking explicit, step-wise justifications and inhibits cross-domain links by collapsing the very pathways that establish the logical and causal connections between concepts. We introduce a scalable framework that decompresses scientific reasoning, constructing a verifiable Long Chain-of-Thought (LCoT) knowledge base and projecting it into an emergent encyclopedia, SciencePedia. Our pipeline operationalizes an endpoint-driven, reductionist strategy: a Socratic agent, guided by a curriculum of around 200 courses, generates approximately 3 million first-principles questions. To ensure high fidelity, multiple independent solver models generate LCoTs, which are then rigorously filtered by prompt sanitization and cross-model answer consensus, retaining only those with verifiable endpoints. This verified corpus powers the Brainstorm Search Engine, which performs inverse knowledge search -- retrieving diverse, first-principles derivations that culminate in a target concept. This engine, in turn, feeds the Plato synthesizer, which narrates these verified chains into coherent articles. The initial SciencePedia comprises approximately 200,000 fine-grained entries spanning mathematics, physics, chemistry, biology, engineering, and computation. In evaluations across six disciplines, Plato-synthesized articles (conditioned on retrieved LCoTs) exhibit substantially higher knowledge-point density and significantly lower factual error rates than an equally-prompted baseline without retrieval (as judged by an external LLM). Built on this verifiable LCoT knowledge base, this reasoning-centric approach enables trustworthy, cross-domain scientific synthesis at scale and establishes the foundation for an ever-expanding encyclopedia.
Abstract:Linguistic Landscape (LL) research traditionally relies on manual photography and annotation of public signages to examine distribution of languages in urban space. While such methods yield valuable findings, the process is time-consuming and difficult for large study areas. This study explores the use of AI powered language detection method to automate LL analysis. Using Honolulu Chinatown as a case study, we constructed a georeferenced photo dataset of 1,449 images collected by researchers and applied AI for optical character recognition (OCR) and language classification. We also conducted manual validations for accuracy checking. This model achieved an overall accuracy of 79%. Five recurring types of mislabeling were identified, including distortion, reflection, degraded surface, graffiti, and hallucination. The analysis also reveals that the AI model treats all regions of an image equally, detecting peripheral or background texts that human interpreters typically ignore. Despite these limitations, the results demonstrate the potential of integrating AI-assisted workflows into LL research to reduce such time-consuming processes. However, due to all the limitations and mis-labels, we recognize that AI cannot be fully trusted during this process. This paper encourages a hybrid approach combining AI automation with human validation for a more reliable and efficient workflow.
Abstract:The rapid advancement of generative AI in medical imaging has introduced both significant opportunities and serious challenges, especially the risk that fake medical images could undermine healthcare systems. These synthetic images pose serious risks, such as diagnostic deception, financial fraud, and misinformation. However, research on medical forensics to counter these threats remains limited, and there is a critical lack of comprehensive datasets specifically tailored for this field. Additionally, existing media forensic methods, which are primarily designed for natural or facial images, are inadequate for capturing the distinct characteristics and subtle artifacts of AI-generated medical images. To tackle these challenges, we introduce \textbf{MedForensics}, a large-scale medical forensics dataset encompassing six medical modalities and twelve state-of-the-art medical generative models. We also propose \textbf{DSKI}, a novel \textbf{D}ual-\textbf{S}tage \textbf{K}nowledge \textbf{I}nfusing detector that constructs a vision-language feature space tailored for the detection of AI-generated medical images. DSKI comprises two core components: 1) a cross-domain fine-trace adapter (CDFA) for extracting subtle forgery clues from both spatial and noise domains during training, and 2) a medical forensic retrieval module (MFRM) that boosts detection accuracy through few-shot retrieval during testing. Experimental results demonstrate that DSKI significantly outperforms both existing methods and human experts, achieving superior accuracy across multiple medical modalities.
Abstract:We propose a novel method, termed the M-learner, for estimating heterogeneous indirect and total treatment effects and identifying relevant subgroups within a mediation framework. The procedure comprises four key steps. First, we compute individual-level conditional average indirect/total treatment effect Second, we construct a distance matrix based on pairwise differences. Third, we apply tSNE to project this matrix into a low-dimensional Euclidean space, followed by K-means clustering to identify subgroup structures. Finally, we calibrate and refine the clusters using a threshold-based procedure to determine the optimal configuration. To the best of our knowledge, this is the first approach specifically designed to capture treatment effect heterogeneity in the presence of mediation. Experimental results validate the robustness and effectiveness of the proposed framework. Application to the real-world Jobs II dataset highlights the broad adaptability and potential applicability of our method.Code is available at https: //anonymous.4open.science/r/M-learner-C4BB.