Abstract:Dynamic Facial Expression Recognition (DFER) aims to identify human emotions from temporally evolving facial movements and plays a critical role in affective computing. While recent vision-language approaches have introduced semantic textual descriptions to guide expression recognition, existing methods still face two key limitations: they often underutilize the subtle emotional cues embedded in generated text, and they have yet to incorporate sufficiently effective mechanisms for filtering out facial dynamics that are irrelevant to emotional expression. To address these gaps, We propose GRACE, Granular Representation Alignment for Cross-modal Emotion recognition that integrates dynamic motion modeling, semantic text refinement, and token-level cross-modal alignment to facilitate the precise localization of emotionally salient spatiotemporal features. Our method constructs emotion-aware textual descriptions via a Coarse-to-fine Affective Text Enhancement (CATE) module and highlights expression-relevant facial motion through a motion-difference weighting mechanism. These refined semantic and visual signals are aligned at the token level using entropy-regularized optimal transport. Experiments on three benchmark datasets demonstrate that our method significantly improves recognition performance, particularly in challenging settings with ambiguous or imbalanced emotion classes, establishing new state-of-the-art (SOTA) results in terms of both UAR and WAR.
Abstract:Time-jerk optimal trajectory planning is crucial in advancing robotic arms' performance in dynamic tasks. Traditional methods rely on solving complex nonlinear programming problems, bringing significant delays in generating optimized trajectories. In this paper, we propose a two-stage approach to accelerate time-jerk optimal trajectory planning. Firstly, we introduce a dual-encoder based transformer model to establish a good preliminary trajectory. This trajectory is subsequently refined through sequential quadratic programming to improve its optimality and robustness. Our approach outperforms the state-of-the-art by up to 79.72\% in reducing trajectory planning time. Compared with existing methods, our method shrinks the optimality gap with the objective function value decreasing by up to 29.9\%.