Abstract:This paper characterizes the impacts of channel estimation errors and Rician factors on achievable data rate and investigates the user scheduling strategy, combining scheme, power control, and dynamic bandwidth allocation to maximize the sum data rate in the distributed multiple-input-multiple-output (MIMO)-enabled low earth orbit (LEO) satellite networks. However, due to the resource-assignment problem, it is challenging to find the optimal solution for maximizing the sum data rate. To transform this problem into a more tractable form, we first quantify the channel estimation errors based on the minimum mean square error (MMSE) estimator and rigorously derive a closed-form lower bound of the achievable data rate, offering an explicit formulation for resource allocation. Then, to solve the NP-hard problem, we decompose it into three sub-problems, namely, user scheduling strategy, joint combination and power control, and dynamic bandwidth allocation, by using alternative optimization (AO). Specifically, the user scheduling is formulated as a graph coloring problem by iteratively updating an undirected graph based on user requirements, which is then solved using the DSatur algorithm. For the combining weights and power control, the successive convex approximation (SCA) and geometrical programming (GP) are adopted to obtain the sub-optimal solution with lower complexity. Finally, the optimal bandwidth allocation can be achieved by solving the concave problem. Numerical results validate the analytical tightness of the derived bound, especially for large Rician factors, and demonstrate significant performance gains over other benchmarks.
Abstract:In this paper, we investigate integrated sensing and communication (ISAC) in a cell-free (CF) multiple-input multiple-output (MIMO) network with single-antenna access points (APs), where each AP functions either as a transmitter for both sensing and communication or as a receiver for target-reflected signals. We derive closed-form Cramer-Rao lower bounds (CRLBs) for location and velocity estimation under arbitrary power allocation ratios, assuming the radar cross-section (RCS) is deterministic and unknown over the observation interval. A power allocation optimization problem is formulated to maximize the communication signal-to-interference-plus-noise ratio (SINR), subject to CRLB-based sensing constraints and per-transmitter power limits. To solve the resulting nonlinear and non-convex problem, we propose a penalty function and projection-based modified conjugate gradient algorithm with inexact line search (PP-MCG-ILS), and an alternative method based on a modified steepest descent approach (PP-MSD-ILS). Additionally, for power minimization in pure sensing scenarios, we introduce a penalty function-based normalized conjugate gradient algorithm (P-NCG-ILS). We analyze the convergence behavior and qualitatively compare the computational complexity of the proposed algorithms. Simulation results confirm the accuracy of the derived CRLBs and demonstrate the effectiveness of the proposed power allocation strategies in enhancing both sensing and overall ISAC performance.
Abstract:In this paper, we propose a low-complexity channel estimation scheme of affine frequency division multiplexing (AFDM) based on generalized complex exponential basis expansion model (GCE-BEM) over doubly selective channels. The GCE-BEM is used to solve fractional Doppler dispersion while significantly reducing the computational complexity of exhaustive search. Then, the closed-form expression of channel estimation error is derived for the minimum mean square error (MMSE) estimation algorithm. Based on the estimated channel, the MMSE detection is adopt to characterize the impacts of estimated channel on bit error rate (BER) by deriving the theoretical lower bound. Finally, numerical results demonstrate that the proposed scheme effectively mitigates severe inter-Doppler interference (IDoI). Our theoretical performance an alysis can perfectly match the Monte-Carlo results, validating the effectiveness of our proposed channel estimation based on GCE-BEM.
Abstract:In this letter, a novel class of sparse codebooks is proposed for sparse code multiple access (SCMA) aided non-terrestrial networks (NTN) with randomly distributed users characterized by Rician fading channels. Specifically, we first exploit the upper bound of bit error probability (BEP) of an SCMA-aided NTN with large-scale fading of different users under Rician fading channels. Then, the codebook is designed by employing pulse-amplitude modulation constellation, user-specific rotation and power factors. To further reduce the optimization complexity while maintaining the power diversity of different users, an orthogonal layer-assisted joint layer and power assignment strategy is proposed. Finally, unlike existing SCMA codebook designs that treat all users as one super-user, we propose to minimize the BEP of the worst user to ensure user fairness. The simulation results show that the proposed scheme is capable of providing a substantial performance gain over conventional codebooks.
Abstract:Affine frequency division multiplexing (AFDM) is a promising chirp-assisted multicarrier waveform for future high-mobility communications. This paper is devoted to enhanced receiver design for multiple input and multiple output AFDM (MIMO-AFDM) systems. Firstly, we introduce a unified variational inference (VI) approach to approximate the target posterior distribution, under which the belief propagation (BP) and expectation propagation (EP)-based algorithms are derived. As both VI-based detection and low-density parity-check (LDPC) decoding can be expressed by bipartite graphs in MIMO-AFDM systems, we construct a joint sparse graph (JSG) by merging the graphs of these two for low-complexity receiver design. Then, based on this graph model, we present the detailed message propagation of the proposed JSG. Additionally, we propose an enhanced JSG (E-JSG) receiver based on the linear constellation encoding model. The proposed E-JSG eliminates the need for interleavers, de-interleavers, and log-likelihood ratio transformations, thus leading to concurrent detection and decoding over the integrated sparse graph. To further reduce detection complexity, we introduce a sparse channel method by approaximating multiple graph edges with insignificant channel coefficients into a single edge on the VI graph. Simulation results show the superiority of the proposed receivers in terms of computational complexity, detection and decoding latency, and error rate performance compared to the conventional ones.
Abstract:Sparse code multiple access (SCMA) and multiple input multiple output (MIMO) are considered as two efficient techniques to provide both massive connectivity and high spectrum efficiency for future machine-type wireless networks. This paper proposes a single sparse graph (SSG) enhanced expectation propagation algorithm (EPA) receiver, referred to as SSG-EPA, for uplink MIMO-SCMA systems. Firstly, we reformulate the sparse codebook mapping process using a linear encoding model, which transforms the variable nodes (VNs) of SCMA from symbol-level to bit-level VNs. Such transformation facilitates the integration of the VNs of SCMA and low-density parity-check (LDPC), thereby emerging the SCMA and LDPC graphs into a SSG. Subsequently, to further reduce the detection complexity, the message propagation between SCMA VNs and function nodes (FNs) are designed based on EPA principles. Different from the existing iterative detection and decoding (IDD) structure, the proposed EPA-SSG allows a simultaneously detection and decoding at each iteration, and eliminates the use of interleavers, de-interleavers, symbol-to-bit, and bit-to-symbol LLR transformations. Simulation results show that the proposed SSG-EPA achieves better error rate performance compared to the state-of-the-art schemes.
Abstract:This paper investigates joint location and velocity estimation, along with their fundamental performance bounds analysis, in a cell-free multi-input multi-output (MIMO) integrated sensing and communication (ISAC) system. First, unlike existing studies that derive likelihood functions for target parameter estimation using continuous received signals, we formulate the maximum likelihood estimation (MLE) for radar sensing based on discrete received signals at a given sampling rate. Second, leveraging the proposed MLEs, we derive closed-form Cramer-Rao lower bounds (CRLBs) for joint location and velocity estimation in both single-target and multiple-target scenarios. Third, to enhance computational efficiency, we propose approximate CRLBs and conduct an in-depth accuracy analysis. Additionally, we thoroughly examine the impact of sampling rate, squared effective bandwidth, and time width on CRLB performance. For multiple-target scenarios, the concepts of safety distance and safety velocity are introduced to characterize conditions under which the CRLBs for multiple targets converge to their single target counterparts. Finally, extensive simulations are conducted to verify the accuracy of the proposed CRLBs and the theoretical results using state-of-the-art waveforms, namely orthogonal frequency division multiplexing (OFDM) and orthogonal chirp division multiplexing (OCDM).
Abstract:In this paper, we investigate a cell-free massive multiple-input and multiple-output (MIMO)-enabled integration communication, computation, and sensing (ICCS) system, aiming to minimize the maximum computation latency to guarantee the stringent sensing requirements. We consider a two-tier offloading framework, where each multi-antenna terminal can optionally offload its local tasks to either multiple mobile-edge servers for distributed computation or the cloud server for centralized computation while satisfying the sensing requirements and power constraint. The above offloading problem is formulated as a mixed-integer programming and non-convex problem, which can be decomposed into three sub-problems, namely, distributed offloading decision, beamforming design, and execution scheduling mechanism. First, the continuous relaxation and penalty-based techniques are applied to tackle the distributed offloading strategy. Then, the weighted minimum mean square error (WMMSE) and successive convex approximation (SCA)-based lower bound are utilized to design the integrated communication and sensing (ISAC) beamforming. Finally, the other resources can be judiciously scheduled to minimize the maximum latency. A rigorous convergence analysis and numerical results substantiate the effectiveness of our method. Furthermore, simulation results demonstrate that multi-point cooperation in cell-free massive MIMO-enabled ICCS significantly reduces overall computation latency, in comparison to the benchmark schemes.
Abstract:This letter studies the low-complexity channel estimation for orthogonal time frequency space (OTFS) in the presence of hardware impairments. Firstly, to tackle the computational complexity of channel estimation, the basis expansion model (BEM) is utilized. Then, the mean square error (MSE) of the estimated channel is theoretically derived, revealing the effects of hardware impairments on channel estimation. Based on the estimated channel, the minimum mean square error (MMSE) detector is adopted to analyze the impacts of imperfect hardware on the bit error rate (BER). Finally, the numerical results validate the correctness of our theoretical analysis of the MSE for channel estimation and lower bound of the BER, and also demonstrate that even minor hardware impairments can significantly degrade the performance of the OTFS system.
Abstract:The design of efficient sparse codebooks in sparse code multiple access (SCMA) system have attracted tremendous research attention in the past few years. This paper proposes a novel nonlinear SCMA (NL-SCMA) that can subsume the conventional SCMA system which is referred to as linear SCMA, as special cases for downlink channels. This innovative approach allows a direct mapping of users' messages to a superimposed codeword for transmission, eliminating the need of a codebook for each user. This mapping is referred to as nonlinear mapping (codebook) in this paper. Hence, the primary objective is to design the nonlinear mapping, rather than the linear codebook for each user. We leverage the Lattice constellation to design the superimposed constellation due to its advantages such as the minimum Euclidean distance (MED), constellation volume, design flexibility and shape gain. Then, by analyzing the error patterns of the Lattice-designed superimposed codewords with the aid of the pair-wise error probability, it is found that the MED of the proposed nonlinear codebook is lower bounded by the ``single error pattern''. To this end, an error pattern-inspired codebook design is proposed, which can achieve large MEDs of the nonlinear codebooks. Numerical results show that the proposed codebooks can achieve lower error rate performance over both Gaussian and Rayleigh fading channels than the-state-of-the-art linear codebooks.