Weizmann Institute of Science
Abstract:We propose a posterior sampling algorithm for the problem of estimating multiple independent source signals from their noisy superposition. The proposed algorithm is a combination of Gibbs sampling method and plug-and-play (PnP) diffusion priors. Unlike most existing diffusion-model-based approaches for signal separation, our method allows source priors to be learned separately and flexibly combined without retraining. Moreover, under the assumption of perfect diffusion model training, the proposed method provably produces samples from the posterior distribution. Experiments on the task of heartbeat extraction from mixtures with synthetic motion artifacts demonstrate the superior performance of our method over existing approaches.
Abstract:Enabling multi-target sensing in near-field integrated sensing and communication (ISAC) systems is a key challenge, particularly when line-of-sight paths are blocked. This paper proposes a beamforming framework that leverages a reconfigurable intelligent surface (RIS) to achieve multi-target indication. Our contribution is the extension of classic beampattern gain and inter-target cross-correlation metrics to the near-field, leveraging both angle and distance information to discriminate between multiple users and targets. We formulate a problem to maximize the worst-case sensing performance by jointly designing the beamforming at the base station and the phase shifts at the RIS, while guaranteeing communication rates. The non-convex problem is solved via an efficient alternating optimization (AO) algorithm that utilizes semidefinite relaxation (SDR). Simulations demonstrate that our RIS-assisted framework enables high-resolution sensing of co-angle targets in blocked scenarios.
Abstract:Electromagnetic (EM) imaging is an important tool for non-invasive sensing with low-cost and portable devices. One emerging application is EM stroke imaging, which enables early diagnosis and continuous monitoring of brain strokes. Quantitative imaging is achieved by solving an inverse scattering problem (ISP) that reconstructs permittivity and conductivity maps from measurements. In general, the reconstruction accuracy is limited by its inherent nonlinearity and ill-posedness. Existing methods, including learning-free and learning-based approaches, fail to either incorporate complicated prior distributions or provide theoretical guarantees, posing difficulties in balancing interpretability, distortion error, and reliability. To overcome these limitations, we propose a posterior sampling method based on latent diffusion for quantitative EM brain imaging, adapted from a generative plug-and-play (PnP) posterior sampling framework. Our approach allows to flexibly integrate prior knowledge into physics-based inversion without requiring paired measurement-label datasets. We first learn the prior distribution of targets from an unlabeled dataset, and then incorporate the learned prior into posterior sampling. In particular, we train a latent diffusion model on permittivity and conductivity maps to capture their prior distribution. Then, given measurements and the forward model describing EM wave physics, we perform posterior sampling by alternating between two samplers that respectively enforce the likelihood and prior distributions. Finally, reliable reconstruction is obtained through minimum mean squared error (MMSE) estimation based on the samples. Experimental results on brain imaging demonstrate that our approach achieves state-of-the-art performance in reconstruction accuracy and structural similarity while maintaining high measurement fidelity.
Abstract:Reconfigurable antennas, including reconfigurable intelligent surface (RIS), movable antenna (MA), fluid antenna (FA), and other advanced antenna techniques, have been studied extensively in the context of reshaping wireless propagation environments for 6G and beyond wireless communications. Nevertheless, how to reconfigure/optimize the real-time controllable coefficients to achieve a favorable end-to-end wireless channel remains a substantial challenge, as it usually requires accurate modeling of the complex interaction between the reconfigurable devices and the electromagnetic waves, as well as knowledge of implicit channel propagation parameters. In this paper, we introduce a derivative-free optimization (a.k.a., zeroth-order (ZO) optimization) technique to directly optimize reconfigurable coefficients to shape the wireless end-to-end channel, without the need of channel modeling and estimation of the implicit environmental propagation parameters. We present the fundamental principles of ZO optimization and discuss its potential advantages in wireless channel reconfiguration. Two case studies for RIS and movable antenna-enabled single-input single-output (SISO) systems are provided to show the superiority of ZO-based methods as compared to state-of-the-art techniques. Finally, we outline promising future research directions and offer concluding insights on derivative-free optimization for reconfigurable antenna technologies.
Abstract:In 6G networks, integrated sensing and communication (ISAC) is envisioned as a key technology that enables wireless systems to perform joint sensing and communication using shared hardware, antennas and spectrum. ISAC designs facilitate emerging applications such as smart cities and autonomous driving. Such applications also demand ultra-reliable and low-latency communication (URLLC). Thus, an ISAC-enabled URLLC system can prioritize time-sensitive targets and ensure information delivery under strict latency and reliability constraints. We propose a bi-static MIMO ISAC system to detect the arrival of URLLC messages and prioritize their delivery. In this system, a base station (BS) communicates with a user equipment (UE) and a sensing receiver (SR) is deployed to collect echo signals reflected from a target of interest. The BS regularly transmits messages of enhanced mobile broadband (eMBB) services to the UE. During each eMBB transmission, if the SR senses the presence of a target of interest, it immediately triggers the transmission of an additional URLLC message. To reinforce URLLC transmissions, we propose a dirty-paper coding (DPC)-based technique that mitigates the interference of both eMBB and sensing signals. To decode the eMBB message, we consider two approaches for handling the URLLC interference: treating interference as noise and successive interference cancellation. For this system, we formulate the rate-reliability-detection trade-off in the finite blocklength (FBL) regime by evaluating the communication rate of the eMBB transmissions, the reliability of the URLLC transmissions and the probability of the target detection. Our numerical analysis show that our proposed DPC-based ISAC scheme significantly outperforms power-sharing and traditional time-sharing schemes. In particular, it achieves higher eMBB transmission rate while satisfying both URLLC and sensing constraints.
Abstract:Extended object tracking methods based on random matrices, founded on Bayesian filters, have been able to achieve efficient recursive processes while jointly estimating the kinematic states and extension of the targets. Existing random matrix approaches typically assume that the evolution of state and extension follows a first-order Markov process, where the current estimate of the target depends solely on the previous moment. However, in real-world scenarios, this assumption fails because the evolution of states and extension is usually non-Markovian. In this paper, we introduce a novel extended object tracking method: a Bayesian recursive neural network assisted by deep memory. Initially, we propose an equivalent model under a non-Markovian assumption and derive the implementation of its Bayesian filtering framework. Thereafter, Gaussian approximation and moment matching are employed to derive the analytical solution for the proposed Bayesian filtering framework. Finally, based on the closed-form solution, we design an end-to-end trainable Bayesian recursive neural network for extended object tracking. Experiment results on simulated and real-world datasets show that the proposed methods outperforms traditional extended object tracking methods and state-of-the-art deep learning approaches.
Abstract:Integrated sensing and communication (ISAC) is one of the key usage scenarios for future sixth-generation (6G) mobile communication networks, where communication and sensing (C&S) services are simultaneously provided through shared wireless spectrum, signal processing modules, hardware, and network infrastructure. Such an integration is strengthened by the technology trends in 6G, such as denser network nodes, larger antenna arrays, wider bandwidths, higher frequency bands, and more efficient utilization of spectrum and hardware resources, which incentivize and empower enhanced sensing capabilities. As the dominant waveform used in contemporary communication systems, orthogonal frequency division multiplexing (OFDM) is still expected to be a very competitive technology for 6G, rendering it necessary to thoroughly investigate the potential and challenges of OFDM ISAC. Thus, this paper aims to provide a comprehensive tutorial overview of ISAC systems enabled by large-scale multi-input multi-output (MIMO) and OFDM technologies and to discuss their fundamental principles, advantages, and enabling signal processing methods. To this end, a unified MIMO-OFDM ISAC system model is first introduced, followed by four frameworks for estimating parameters across the spatial, delay, and Doppler domains, including parallel one-domain, sequential one-domain, joint two-domain, and joint three-domain parameter estimation. Next, sensing algorithms and performance analyses are presented in detail for far-field scenarios where uniform plane wave (UPW) propagation is valid, followed by their extensions to near-field scenarios where uniform spherical wave (USW) characteristics need to be considered. Finally, this paper points out open challenges and outlines promising avenues for future research on MIMO-OFDM ISAC.
Abstract:The next generation of wireless communications seeks to deeply integrate artificial intelligence (AI) with user-centric communication networks, with the goal of developing AI-native networks that more accurately address user requirements. The rapid development of large language models (LLMs) offers significant potential in realizing these goals. However, existing efforts that leverage LLMs for wireless communication often overlook the considerable gap between human natural language and the intricacies of real-world communication systems, thus failing to fully exploit the capabilities of LLMs. To address this gap, we propose a novel LLM-driven paradigm for wireless communication that innovatively incorporates the nature language to structured query language (NL2SQL) tool. Specifically, in this paradigm, user personal requirements is the primary focus. Upon receiving a user request, LLMs first analyze the user intent in terms of relevant communication metrics and system parameters. Subsequently, a structured query language (SQL) statement is generated to retrieve the specific parameter values from a high-performance real-time database. We further utilize LLMs to formulate and solve an optimization problem based on the user request and the retrieved parameters. The solution to this optimization problem then drives adjustments in the communication system to fulfill the user's requirements. To validate the feasibility of the proposed paradigm, we present a prototype system. In this prototype, we consider user-request centric semantic communication (URC-SC) system in which a dynamic semantic representation network at the physical layer adapts its encoding depth to meet user requirements. Additionally, two LLMs are employed to analyze user requests and generate SQL statements, respectively. Simulation results demonstrate the effectiveness.
Abstract:Deep generative models have been studied and developed primarily in the context of natural images and computer vision. This has spurred the development of (Bayesian) methods that use these generative models for inverse problems in image restoration, such as denoising, inpainting, and super-resolution. In recent years, generative modeling for Bayesian inference on sensory data has also gained traction. Nevertheless, the direct application of generative modeling techniques initially designed for natural images on raw sensory data is not straightforward, requiring solutions that deal with high dynamic range signals acquired from multiple sensors or arrays of sensors that interfere with each other, and that typically acquire data at a very high rate. Moreover, the exact physical data-generating process is often complex or unknown. As a consequence, approximate models are used, resulting in discrepancies between model predictions and the observations that are non-Gaussian, in turn complicating the Bayesian inverse problem. Finally, sensor data is often used in real-time processing or decision-making systems, imposing stringent requirements on, e.g., latency and throughput. In this paper, we will discuss some of these challenges and offer approaches to address them, all in the context of high-rate real-time sensing applications in automotive radar and medical imaging.
Abstract:We consider high angular resolution detection using distributed mobile platforms implemented with so-called partly calibrated arrays, where position errors between subarrays exist and the counterparts within each subarray are ideally calibrated. Since position errors between antenna arrays affect the coherent processing of measurements from these arrays, it is commonly believed that its angular resolution is influenced. A key question is whether and how much the angular resolution of partly calibrated arrays is affected by the position errors, in comparison with ideally calibrated arrays. To address this fundamental problem, we theoretically illustrate that partly calibrated arrays approximately achieve high angular resolution. Our analysis uses a special characteristic of Cramer-Rao lower bound (CRB) w.r.t. the source separation: When the source separation increases, the CRB first declines rapidly, then plateaus out, and the turning point is close to the angular resolution limit. This means that the turning point of CRB can be used to indicate angular resolution. We then theoretically analyze the declining and plateau phases of CRB, and explain that the turning point of CRB in partly calibrated arrays is close to the angular resolution limit of distributed arrays without errors, demonstrating high resolution ability. This work thus provides a theoretical guarantee for the high-resolution performance of distributed antenna arrays in mobile platforms.