Abstract:Integrated sensing and communication (ISAC) is one of the key usage scenarios for future sixth-generation (6G) mobile communication networks, where communication and sensing (C&S) services are simultaneously provided through shared wireless spectrum, signal processing modules, hardware, and network infrastructure. Such an integration is strengthened by the technology trends in 6G, such as denser network nodes, larger antenna arrays, wider bandwidths, higher frequency bands, and more efficient utilization of spectrum and hardware resources, which incentivize and empower enhanced sensing capabilities. As the dominant waveform used in contemporary communication systems, orthogonal frequency division multiplexing (OFDM) is still expected to be a very competitive technology for 6G, rendering it necessary to thoroughly investigate the potential and challenges of OFDM ISAC. Thus, this paper aims to provide a comprehensive tutorial overview of ISAC systems enabled by large-scale multi-input multi-output (MIMO) and OFDM technologies and to discuss their fundamental principles, advantages, and enabling signal processing methods. To this end, a unified MIMO-OFDM ISAC system model is first introduced, followed by four frameworks for estimating parameters across the spatial, delay, and Doppler domains, including parallel one-domain, sequential one-domain, joint two-domain, and joint three-domain parameter estimation. Next, sensing algorithms and performance analyses are presented in detail for far-field scenarios where uniform plane wave (UPW) propagation is valid, followed by their extensions to near-field scenarios where uniform spherical wave (USW) characteristics need to be considered. Finally, this paper points out open challenges and outlines promising avenues for future research on MIMO-OFDM ISAC.
Abstract:This letter studies an uplink integrated sensing and communication (ISAC) system using discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM) transmission. We try to answer the following fundamental question: With only a fractional bandwidth allocated to the user with sensing task, can the same delay resolution and unambiguous range be achieved as if all bandwidth were allocated to it? We affirmatively answer the question by proposing a novel two-stage delay estimation (TSDE) method that exploits the following facts: without increasing the allocated bandwidth, higher delay resolution can be achieved via distributed subcarrier allocation compared to its collocated counterpart, while there is a trade-off between delay resolution and unambiguous range by varying the decimation factor of subcarriers. Therefore, the key idea of the proposed TSDE method is to first perform coarse delay estimation with collocated subcarriers to achieve a large unambiguous range, and then use distributed subcarriers with optimized decimation factor to enhance delay resolution while avoiding delay ambiguity. Our analysis shows that the proposed TSDE method can achieve the full-bandwidth delay resolution and unambiguous range, by using only at most half of the full bandwidth, provided that the channel delay spread is less than half of the unambiguous range. Numerical results show the superiority of the proposed method over the conventional method with collocated subcarriers.