Abstract:In this paper, we model the minimum achievable throughput within a transmission block of restricted duration and aim to maximize it in movable antenna (MA)-enabled multiuser downlink communications. Particularly, we account for the antenna moving delay caused by mechanical movement, which has not been fully considered in previous studies, and reveal the trade-off between the delay and signal-to-interference-plus-noise ratio at users. To this end, we first consider a single-user setup to analyze the necessity of antenna movement. By quantizing the virtual angles of arrival, we derive the requisite region size for antenna moving, design the initial MA position, and elucidate the relationship between quantization resolution and moving region size. Furthermore, an efficient algorithm is developed to optimize MA position via successive convex approximation, which is subsequently extended to the general multiuser setup. Numerical results demonstrate that the proposed algorithms outperform fixed-position antenna schemes and existing ones without consideration of movement delay. Additionally, our algorithms exhibit excellent adaptability and stability across various transmission block durations and moving region sizes, and are robust to different antenna moving speeds. This allows the hardware cost of MA-aided systems to be reduced by employing low rotational speed motors.
Abstract:Intelligent omni-surfaces (IOSs) with 360-degree electromagnetic radiation significantly improves the performance of wireless systems, while an adversarial IOS also poses a significant potential risk for physical layer security. In this paper, we propose a "DISCO" IOS (DIOS) based fully-passive jammer (FPJ) that can launch omnidirectional fully-passive jamming attacks. In the proposed DIOS-based FPJ, the interrelated refractive and reflective (R&R) coefficients of the adversarial IOS are randomly generated, acting like a "DISCO" that distributes wireless energy radiated by the base station. By introducing active channel aging (ACA) during channel coherence time, the DIOS-based FPJ can perform omnidirectional fully-passive jamming without neither jamming power nor channel knowledge of legitimate users (LUs). To characterize the impact of the DIOS-based PFJ, we derive the statistical characteristics of DIOS-jammed channels based on two widely-used IOS models, i.e., the constant-amplitude model and the variable-amplitude model. Consequently, the asymptotic analysis of the ergodic achievable sum rates under the DIOS-based omnidirectional fully-passive jamming is given based on the derived stochastic characteristics for both the two IOS models. Based on the derived analysis, the omnidirectional jamming impact of the proposed DIOS-based FPJ implemented by a constant-amplitude IOS does not depend on either the quantization number or the stochastic distribution of the DIOS coefficients, while the conclusion does not hold on when a variable-amplitude IOS is used. Numerical results based on one-bit quantization of the IOS phase shifts are provided to verify the effectiveness of the derived theoretical analysis. The proposed DIOS-based FPJ can not only launch omnidirectional fully-passive jamming, but also improve the jamming impact by about 55% at 10 dBm transmit power per LU.
Abstract:The passive and frequency-flat reflection of IRS, as well as the high-dimensional IRS-reflected channels, have posed significant challenges for efficient IRS channel estimation, especially in wideband communication systems with significant multi-path channel delay spread. To address these challenges, we propose a novel neural network (NN)-empowered framework for IRS channel autocorrelation matrix estimation in wideband orthogonal frequency division multiplexing (OFDM) systems. This framework relies only on the easily accessible reference signal received power (RSRP) measurements at users in existing wideband communication systems, without requiring additional pilot transmission. Based on the estimates of channel autocorrelation matrix, the passive reflection of IRS is optimized to maximize the average user received signal-to-noise ratio (SNR) over all subcarriers in the OFDM system. Numerical results verify that the proposed algorithm significantly outperforms existing powermeasurement-based IRS reflection designs in wideband channels.
Abstract:The codebook-based analog beamforming is appealing for future terahertz (THz) communications since it can generate high-gain directional beams with low-cost phase shifters via low-complexity beam training. However, conventional beamforming codebook design based on array response vectors for narrowband communications may suffer from severe performance loss in wideband systems due to the ``beam squint" effect over frequency. To tackle this issue, we propose in this paper a new codebook design method for analog beamforming in wideband THz systems. In particular, to characterize the analog beamforming performance in wideband systems, we propose a new metric termed wideband beam gain, which is given by the minimum beamforming gain over the entire frequency band given a target angle. Based on this metric, a wideband analog beamforming codebook design problem is formulated for optimally balancing the beamforming gains in both the spatial and frequency domains, and the performance loss of conventional narrowband beamforming in wideband systems is analyzed. To solve the new wideband beamforming codebook design problem, we divide the spatial domain into orthogonal angular zones each associated with one beam, thereby decoupling the codebook design into a zone division sub-problem and a set of beamforming optimization sub-problems each for one zone. For the zone division sub-problem, we propose a bisection method to obtain the optimal boundaries for separating adjacent zones. While for each of the per-zone-based beamforming optimization sub-problems, we further propose an efficient augmented Lagrange method (ALM) to solve it. Numerical results demonstrate the performance superiority of our proposed codebook design for wideband analog beamforming to the narrowband beamforming codebook and also validate our performance analysis.
Abstract:Movable antenna (MA) has emerged as a promising technology for improving the performance of wireless communication systems, which enables local movement of the antennas to create more favorable channel conditions. In this letter, we advance its application for over-the-air computation (AirComp) network, where an access point is equipped with a two-dimensional (2D) MA array to aggregate wireless data from massive users. We aim to minimize the computation mean square error (CMSE) by jointly optimizing the antenna position vector (APV), the receive combining vector at the access point and the transmit coefficients from all users. To tackle this highly non-convex problem, we propose a two-loop iterative algorithm, where the particle swarm optimization (PSO) approach is leveraged to obtain a suboptimal APV in the outer loop while the receive combining vector and transmit coefficients are alternately optimized in the inner loop. Numerical results demonstrate that the proposed MA-enhanced AirComp network outperforms the conventional network with fixed-position antennas (FPAs).
Abstract:Intelligent reflecting surface (IRS) and movable antenna (MA)/fluid antenna (FA) techniques have both received increasing attention in the realm of wireless communications due to their ability to reconfigure and improve wireless channel conditions. In this paper, we investigate the integration of MAs/FAs into an IRS-assisted wireless communication system. In particular, we consider the downlink transmission from a multi-MA base station (BS) to a single-antenna user with the aid of an IRS, aiming to maximize the user's received signal-to-noise ratio (SNR), by jointly optimizing the BS/IRS active/passive beamforming and the MAs' positions. Due to the similar capability of MAs and IRS for channel reconfiguration, we first conduct theoretical analyses of the performance gain of MAs over conventional fixed-position antennas (FPAs) under the line-of-sight (LoS) BS-IRS channel and derive the conditions under which the performance gain becomes more or less significant. Next, to solve the received SNR maximization problem, we propose an alternating optimization (AO) algorithm that decomposes it into two subproblems and solve them alternately. Numerical results are provided to validate our analytical results and evaluate the performance gains of MAs over FPAs under different setups.
Abstract:The movable antenna (MA) technology has attracted increasing attention in wireless communications due to its capability for flexibly adjusting the positions of multiple antennas in a local region to reconfigure channel conditions. In this paper, we investigate its application in an amplify-and-forward (AF) relay system, where a multi-MA AF relay is deployed to assist in the wireless communications from a source to a destination. In particular, we aim to maximize the achievable rate at the destination, by jointly optimizing the AF weight matrix at the relay and its MAs' positions in two stages for receiving the signal from the source and transmitting its amplified version to the destination, respectively. However, compared to the existing one-stage antenna position optimization, the two-stage position optimization is more challenging due to its intricate coupling in the achievable rate at the destination. To tackle this challenge, we decompose the considered problem into several subproblems by invoking the alternating optimization (AO) and solve them by using the semidefinite programming and the gradient ascent. Numerical results demonstrate the superiority of our proposed system over the conventional relaying system with fixed-position antennas (FPAs) and also drive essential insights.
Abstract:Fluid antennas (FAs) and mobile antennas (MAs) are innovative technologies in wireless communications that are able to proactively improve channel conditions by dynamically adjusting the transmit/receive antenna positions within a given spatial region. In this paper, we investigate an MA-enhanced multiple-input single-output (MISO) secure communication system, aiming to maximize the secrecy rate by jointly optimizing the positions of multiple MAs. Instead of continuously searching for the optimal MA positions as in prior works, we propose to discretize the transmit region into multiple sampling points, thereby converting the continuous antenna position optimization into a discrete sampling point selection problem. However, this point selection problem is combinatory and thus difficult to be optimally solved. To tackle this challenge, we ingeniously transform this combinatory problem into a recursive path selection problem in graph theory and propose a partial enumeration algorithm to obtain its optimal solution without the need for high-complexity exhaustive search. To further reduce the complexity, a linear-time sequential update algorithm is also proposed to obtain a high-quality suboptimal solution. Numerical results show that our proposed algorithms yield much higher secrecy rates as compared to the conventional FPA and other baseline schemes.
Abstract:Fluid antennas (FAs) and movable antennas (MAs) have attracted increasing attention in wireless communications recently. As compared to the conventional fixed-position antennas (FPAs), their geometry can be dynamically reconfigured, such that more flexible beamforming can be achieved for signal coverage and/or interference nulling. In this paper, we investigate the use of MAs to achieve uniform coverage for multiple regions with arbitrary number and width in the spatial domain. In particular, we aim to jointly optimize the MAs weights and positions within a linear array to maximize the minimum beam gain over the desired spatial regions. However, the resulting problem is non-convex and difficult to be optimally solved. To tackle this difficulty, we propose an alternating optimization (AO) algorithm to obtain a high-quality suboptimal solution, where the MAs weights and positions are alternately optimized by applying successive convex approximation (SCA) technique. Numerical results show that our proposed MAbased beam coverage scheme can achieve much better performance than conventional FPAs.
Abstract:Movable antennas (MAs), traditionally explored in antenna design, have recently garnered significant attention in wireless communications due to their ability to dynamically adjust the antenna positions to changes in the propagation environment. However, previous research has primarily focused on characterizing the performance limits of various MA-assisted wireless communication systems, with less emphasis on their practical implementation. To address this gap, in this article, we propose several general MA architectures that extend existing designs by varying several key aspects to cater to different application scenarios and tradeoffs between cost and performance. Additionally, we draw from fields such as antenna design and mechanical control to provide an overview of candidate implementation methods for the proposed MA architectures, utilizing either direct mechanical or equivalent electronic control. Simulation results are finally presented to support our discussion.