Abstract:Leveraging long-term user behavioral patterns is a key trajectory for enhancing the accuracy of modern recommender systems. While generative recommender systems have emerged as a transformative paradigm, they face hurdles in effectively modeling extensive historical sequences. To address this challenge, we propose GLASS, a novel framework that integrates long-term user interests into the generative process via SID-Tier and Semantic Search. We first introduce SID-Tier, a module that maps long-term interactions into a unified interest vector to enhance the prediction of the initial SID token. Unlike traditional retrieval models that struggle with massive item spaces, SID-Tier leverages the compact nature of the semantic codebook to incorporate cross features between the user's long-term history and candidate semantic codes. Furthermore, we present semantic hard search, which utilizes generated coarse-grained semantic ID as dynamic keys to extract relevant historical behaviors, which are then fused via an adaptive gated fusion module to recalibrate the trajectory of subsequent fine-grained tokens. To address the inherent data sparsity in semantic hard search, we propose two strategies: semantic neighbor augmentation and codebook resizing. Extensive experiments on two large-scale real-world datasets, TAOBAO-MM and KuaiRec, demonstrate that GLASS outperforms state-of-the-art baselines, achieving significant gains in recommendation quality. Our codes are made publicly available to facilitate further research in generative recommendation.
Abstract:The growing demand for large language models (LLMs) with tunable reasoning capabilities in many real-world applications highlights a critical need for methods that can efficiently produce a spectrum of models balancing reasoning depth and computational cost. Model merging has emerged as a promising, training-free technique to address this challenge by arithmetically combining the weights of a general-purpose model with a specialized reasoning model. While various merging techniques exist, their potential to create a spectrum of models with fine-grained control over reasoning abilities remains largely unexplored. This work presents a large-scale empirical study evaluating a range of model merging techniques across multiple reasoning benchmarks. We systematically vary merging strengths to construct accuracy-efficiency curves, providing the first comprehensive view of the tunable performance landscape. Our findings reveal that model merging offers an effective and controllable method for calibrating the trade-off between reasoning accuracy and token efficiency, even when parent models have highly divergent weight spaces. Crucially, we identify instances of Pareto Improvement, where a merged model achieves both higher accuracy and lower token consumption than one of its parents. Our study provides the first comprehensive analysis of this tunable space, offering practical guidelines for creating LLMs with specific reasoning profiles to meet diverse application demands.