Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas, USA
Abstract:Keratoconus (KC) is a corneal disorder that results in blurry and distorted vision. Traditional diagnostic tools, while effective, are often bulky, costly, and require professional operation. In this paper, we present a portable and innovative methodology for diagnosing. Our proposed approach first captures the image reflected on the eye's cornea when a smartphone screen-generated Placido disc sheds its light on an eye, then utilizes a two-stage diagnosis for identifying the KC cornea and pinpointing the location of the KC on the cornea. The first stage estimates the height and width of the Placido disc extracted from the captured image to identify whether it has KC. In this KC identification, k-means clustering is implemented to discern statistical characteristics, such as height and width values of extracted Placido discs, from non-KC (control) and KC-affected groups. The second stage involves the creation of a distance matrix, providing a precise localization of KC on the cornea, which is critical for efficient treatment planning. The analysis of these distance matrices, paired with a logistic regression model and robust statistical analysis, reveals a clear distinction between control and KC groups. The logistic regression model, which classifies small areas on the cornea as either control or KC-affected based on the corresponding inter-disc distances in the distance matrix, reported a classification accuracy of 96.94%, which indicates that we can effectively pinpoint the protrusion caused by KC. This comprehensive, smartphone-based method is expected to detect KC and streamline timely treatment.
Abstract:Inhalation injuries present a challenge in clinical diagnosis and grading due to Conventional grading methods such as the Abbreviated Injury Score (AIS) being subjective and lacking robust correlation with clinical parameters like mechanical ventilation duration and patient mortality. This study introduces a novel deep learning-based diagnosis assistant tool for grading inhalation injuries using bronchoscopy images to overcome subjective variability and enhance consistency in severity assessment. Our approach leverages data augmentation techniques, including graphic transformations, Contrastive Unpaired Translation (CUT), and CycleGAN, to address the scarcity of medical imaging data. We evaluate the classification performance of two deep learning models, GoogLeNet and Vision Transformer (ViT), across a dataset significantly expanded through these augmentation methods. The results demonstrate GoogLeNet combined with CUT as the most effective configuration for grading inhalation injuries through bronchoscopy images and achieves a classification accuracy of 97.8%. The histograms and frequency analysis evaluations reveal variations caused by the augmentation CUT with distribution changes in the histogram and texture details of the frequency spectrum. PCA visualizations underscore the CUT substantially enhances class separability in the feature space. Moreover, Grad-CAM analyses provide insight into the decision-making process; mean intensity for CUT heatmaps is 119.6, which significantly exceeds 98.8 of the original datasets. Our proposed tool leverages mechanical ventilation periods as a novel grading standard, providing comprehensive diagnostic support.
Abstract:The purpose of the study was to find the true comfort of the wearer by conceptualizing, formulating, and proving the relation between physiological and emotional parameters with clothing fit and fabric. A mixed-method research design was used, and the findings showed that physiological indicators such as heart rate are closely linked with user comfort. However, a significant change in emotional response indicated a definite relationship between different fabric and fit types. The research was conducted to discover the relation between true comfort parameters and clothing, which is unique to the field. The findings help us understand how fabric types and clothing fit types can affect physiological and emotional responses, providing the consumer with satisfactory clothing with the suitable properties needed.
Abstract:Since late 2019, the global spread of COVID-19 has affected people's daily life. Temperature is an early and common symptom of Covid. Therefore, a convenient and remote temperature detection method is needed. In this paper, a non-contact method for detecting body temperature is proposed. Our developed algorithm based on blackbody radiation calculates the body temperature of a user-selected area from an obtained image. The findings were confirmed using a FLIR Thermal Camera with an accuracy of 97%.