Abstract:While dynamic Gaussian Splatting has driven significant advances in free-viewpoint video, maintaining its rendering quality with a small memory footprint for efficient streaming transmission still presents an ongoing challenge. Existing streaming dynamic Gaussian Splatting compression methods typically leverage a latent representation to drive the neural network for predicting Gaussian residuals between frames. Their core latent representations can be categorized into structured grid-based and unstructured point-based paradigms. However, the former incurs significant parameter redundancy by inevitably modeling unoccupied space, while the latter suffers from limited compactness as it fails to exploit local correlations. To relieve these limitations, we propose HPC, a novel streaming dynamic Gaussian Splatting compression framework. It employs a hierarchical point-based latent representation that operates on a per-Gaussian basis to avoid parameter redundancy in unoccupied space. Guided by a tailored aggregation scheme, these latent points achieve high compactness with low spatial redundancy. To improve compression efficiency, we further undertake the first investigation to compress neural networks for streaming dynamic Gaussian Splatting through mining and exploiting the inter-frame correlation of parameters. Combined with latent compression, this forms a fully end-to-end compression framework. Comprehensive experimental evaluations demonstrate that HPC substantially outperforms state-of-the-art methods. It achieves a storage reduction of 67% against its baseline while maintaining high reconstruction fidelity.
Abstract:Video coding standards are essential to enable the interoperability and widespread adoption of efficient video compression technologies. In pursuit of greater video compression efficiency, the AVS video coding working group launched the standardization exploration of end-to-end intelligent video coding, establishing the AVS End-to-End Intelligent Video Coding Exploration Model (AVS-EEM) project. A core design principle of AVS-EEM is its focus on practical deployment, featuring inherently low computational complexity and requiring strict adherence to the common test conditions of conventional video coding. This paper details the development history of AVS-EEM and provides a systematic introduction to its key technical framework, covering model architectures, training strategies, and inference optimizations. These innovations have collectively driven the project's rapid performance evolution, enabling continuous and significant gains under strict complexity constraints. Through over two years of iterative refinement and collaborative effort, the coding performance of AVS-EEM has seen substantial improvement. Experimental results demonstrate that its latest model achieves superior compression efficiency compared to the conventional AVS3 reference software, marking a significant step toward a deployable intelligent video coding standard.
Abstract:Vision Language Models (VLMs) achieve strong performance on multimodal tasks but still suffer from hallucination and safety-related failures that persist even at scale. Steering offers a lightweight technique to improve model performance. However, steering, whether input-dependent or input-independent, achieves a meaningful trade-off between efficiency and effectiveness. In this work, we observe that steering vectors can generalize across inputs when tasks share aligned semantic intent. Based on this insight, we propose \textbf{OSGA} (\textbf{O}ne-shot \textbf{S}teering with \textbf{G}enerative \textbf{A}nchor), an input-independent framework that improves model performance with a single optimization instance. OSGA first selects an informative sample via a variance-based data selection strategy and learns a single steering vector with a contrastive objective with generative anchor regularization. The resulting vector can be universally applied at a certain layer during inference time without modifying model parameters. Experiments across multiple benchmarks show that a single OSGA-optimized steering vector consistently improves hallucination mitigation and safety enhancement with negligible overhead, highlighting one-shot steering as a practical and scalable solution for reliable VLMs.
Abstract:Hash grids are widely used to learn an implicit neural field for Gaussian splatting, serving either as part of the entropy model or for inter-frame prediction. However, due to the irregular and non-uniform distribution of Gaussian splats in 3D space, numerous sparse regions exist, rendering many features in the hash grid invalid. This leads to redundant storage and transmission overhead. In this work, we propose a hash grid feature pruning method that identifies and prunes invalid features based on the coordinates of the input Gaussian splats, so that only the valid features are encoded. This approach reduces the storage size of the hash grid without compromising model performance, leading to improved rate-distortion performance. Following the Common Test Conditions (CTC) defined by the standardization committee, our method achieves an average bitrate reduction of 8% compared to the baseline approach.
Abstract:Ultra-low bitrate image compression (below 0.05 bits per pixel) is increasingly critical for bandwidth-constrained and computation-limited encoding scenarios such as edge devices. Existing frameworks typically rely on large pretrained encoders (e.g., VAEs or tokenizer-based models) and perform transform coding within their generative latent space. While these approaches achieve impressive perceptual fidelity, their reliance on heavy encoder networks makes them unsuitable for deployment on weak sender devices. In this work, we explore the feasibility of applying shallow encoders for ultra-low bitrate compression and propose a novel Asymmetric Extreme Image Compression (AEIC) framework that pursues simultaneously encoding simplicity and decoding quality. Specifically, AEIC employs moderate or even shallow encoder networks, while leveraging an one-step diffusion decoder to maintain high-fidelity and high-realism reconstructions under extreme bitrates. To further enhance the efficiency of shallow encoders, we design a dual-side feature distillation scheme that transfers knowledge from AEIC with moderate encoders to its shallow encoder variants. Experiments demonstrate that AEIC not only outperforms existing methods on rate-distortion-perception performance at ultra-low bitrates, but also delivers exceptional encoding efficiency for 35.8 FPS on 1080P input images, while maintaining competitive decoding speed compared to existing methods.




Abstract:Large Language Models (LLMs) have revolutionized natural language processing tasks, but their deployment in datacenter environments faces significant challenges due to the massive memory requirements of key-value (KV) caches. During the autoregressive decoding process, KV caches consume substantial GPU memory, limiting batch sizes and overall system throughput. To address these challenges, we propose \textbf{CXL-SpecKV}, a novel disaggregated KV-cache architecture that leverages Compute Express Link (CXL) interconnects and FPGA accelerators to enable efficient speculative execution and memory disaggregation. Our approach introduces three key innovations: (i) a CXL-based memory disaggregation framework that offloads KV-caches to remote FPGA memory with low latency, (ii) a speculative KV-cache prefetching mechanism that predicts and preloads future tokens' cache entries, and (iii) an FPGA-accelerated KV-cache compression and decompression engine that reduces memory bandwidth requirements by up to 4$\times$. When evaluated on state-of-the-art LLM models, CXL-SpecKV achieves up to 3.2$\times$ higher throughput compared to GPU-only baselines, while reducing memory costs by 2.8$\times$ and maintaining accuracy. Our system demonstrates that intelligent memory disaggregation combined with speculative execution can effectively address the memory wall challenge in large-scale LLM serving. Our code implementation has been open-sourced at https://github.com/FastLM/CXL-SpecKV.
Abstract:Transformers have revolutionized natural language processing, but their quadratic complexity with respect to sequence length remains a fundamental bottleneck for long-range modeling. While sparse attention mechanisms like RingAttention reduce computational costs by restricting attention to local neighborhoods, they suffer from limited receptive fields and lack of adaptability. We present \PiAttention, a periodic sparse Transformer that factorizes attention into ring-local neighborhoods, deterministic $π$-stride skips, and an adaptive fusion gate. The periodic structure provides predictable coverage of distant tokens, while the sparse footprint keeps the per-layer complexity linear in context length. We prove that \PiAttention achieves $\mathcal{O}(kL + π\log L)$ receptive field growth compared to $\mathcal{O}(kL)$ for RingAttention, where $k$ is the local window size, $π$ is the skip period, and $L$ is the sequence length. Extensive experiments on language modeling, retrieval, and vision-language tasks demonstrate that \PiAttention matches or surpasses dense attention quality with 8.3\% lower perplexity than RingAttention while using 50\% fewer GPUs for the same context length. Our detailed ablations and visualizations reveal the importance of periodic skips, adaptive fusion, and head-level sparsity coordination for efficient long-context modeling.
Abstract:Neural video compression (NVC) technologies have advanced rapidly in recent years, yielding state-of-the-art schemes such as DCVC-RT that offer superior compression efficiency to H.266/VVC and real-time encoding/decoding capabilities. Nonetheless, existing NVC schemes have several limitations, including inefficiency in dealing with disocclusion and new content, interframe error propagation and accumulation, among others. To eliminate these limitations, we borrow the idea from classic video coding schemes, which allow intra coding within inter-coded frames. With the intra coding tool enabled, disocclusion and new content are properly handled, and interframe error propagation is naturally intercepted without the need for manual refresh mechanisms. We present an NVC framework with unified intra and inter coding, where every frame is processed by a single model that is trained to perform intra/inter coding adaptively. Moreover, we propose a simultaneous two-frame compression design to exploit interframe redundancy not only forwardly but also backwardly. Experimental results show that our scheme outperforms DCVC-RT by an average of 10.7\% BD-rate reduction, delivers more stable bitrate and quality per frame, and retains real-time encoding/decoding performances. Code and models will be released.
Abstract:Multimodal large language models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet they remain highly susceptible to hallucinations, producing content that is fluent but inconsistent with visual evidence. Such hallucinations, spanning objects, attributes, and relations, persist even in larger models, while existing mitigation approaches often require additional finetuning, handcrafted priors, or trade-offs that compromise informativeness and scalability. To address this limitation, we propose a training-free, self-supervised method for hallucination mitigation. Our approach introduces a novel hallucination amplification mechanism: a caption is projected into the visual space via a text-to-image model to reveal implicit hallucination signals, serving as a negative anchor, while the original image provides a positive anchor. Leveraging these dual anchors, we edit decoder hidden states by pulling representations toward faithful semantics and pushing them away from hallucination directions. This correction requires no human priors or additional training costs, ensuring both effectiveness and efficiency. Extensive experiments across multiple benchmarks show that our method significantly reduces hallucinations at the object, attribute, and relation levels while largely preserving recall and caption richness, e.g., achieving a hallucination reduction by over 5% using LLaVA-v1.5-7B on CHAIR. Furthermore, results on diverse architectures, including LLaVA-NEXT-7B, Cambrian-8B, and InstructBLIP-7B, validate strong cross-architecture generalization. More importantly, when applied to hallucination-free captions, our method introduces almost no side effects, underscoring its robustness and practical plug-and-play applicability. The implementation will be publicly available.
Abstract:CPU-based trusted execution environments (TEEs) and differential privacy (DP) have gained wide applications for private inference. Due to high inference latency in TEEs, researchers use partition-based approaches that offload linear model components to GPUs. However, dense nonlinear layers of large language models (LLMs) result in significant communication overhead between TEEs and GPUs. DP-based approaches apply random noise to protect data privacy, but this compromises LLM performance and semantic understanding. To overcome the above drawbacks, this paper proposes CMIF, a Confidential and efficient Model Inference Framework. CMIF confidentially deploys the embedding layer in the client-side TEE and subsequent layers on GPU servers. Meanwhile, it optimizes the Report-Noisy-Max mechanism to protect sensitive inputs with a slight decrease in model performance. Extensive experiments on Llama-series models demonstrate that CMIF reduces additional inference overhead in TEEs while preserving user data privacy.