Abstract:Hash grids are widely used to learn an implicit neural field for Gaussian splatting, serving either as part of the entropy model or for inter-frame prediction. However, due to the irregular and non-uniform distribution of Gaussian splats in 3D space, numerous sparse regions exist, rendering many features in the hash grid invalid. This leads to redundant storage and transmission overhead. In this work, we propose a hash grid feature pruning method that identifies and prunes invalid features based on the coordinates of the input Gaussian splats, so that only the valid features are encoded. This approach reduces the storage size of the hash grid without compromising model performance, leading to improved rate-distortion performance. Following the Common Test Conditions (CTC) defined by the standardization committee, our method achieves an average bitrate reduction of 8% compared to the baseline approach.
Abstract:Ultra-low bitrate image compression (below 0.05 bits per pixel) is increasingly critical for bandwidth-constrained and computation-limited encoding scenarios such as edge devices. Existing frameworks typically rely on large pretrained encoders (e.g., VAEs or tokenizer-based models) and perform transform coding within their generative latent space. While these approaches achieve impressive perceptual fidelity, their reliance on heavy encoder networks makes them unsuitable for deployment on weak sender devices. In this work, we explore the feasibility of applying shallow encoders for ultra-low bitrate compression and propose a novel Asymmetric Extreme Image Compression (AEIC) framework that pursues simultaneously encoding simplicity and decoding quality. Specifically, AEIC employs moderate or even shallow encoder networks, while leveraging an one-step diffusion decoder to maintain high-fidelity and high-realism reconstructions under extreme bitrates. To further enhance the efficiency of shallow encoders, we design a dual-side feature distillation scheme that transfers knowledge from AEIC with moderate encoders to its shallow encoder variants. Experiments demonstrate that AEIC not only outperforms existing methods on rate-distortion-perception performance at ultra-low bitrates, but also delivers exceptional encoding efficiency for 35.8 FPS on 1080P input images, while maintaining competitive decoding speed compared to existing methods.
Abstract:Large Language Models (LLMs) have revolutionized natural language processing tasks, but their deployment in datacenter environments faces significant challenges due to the massive memory requirements of key-value (KV) caches. During the autoregressive decoding process, KV caches consume substantial GPU memory, limiting batch sizes and overall system throughput. To address these challenges, we propose \textbf{CXL-SpecKV}, a novel disaggregated KV-cache architecture that leverages Compute Express Link (CXL) interconnects and FPGA accelerators to enable efficient speculative execution and memory disaggregation. Our approach introduces three key innovations: (i) a CXL-based memory disaggregation framework that offloads KV-caches to remote FPGA memory with low latency, (ii) a speculative KV-cache prefetching mechanism that predicts and preloads future tokens' cache entries, and (iii) an FPGA-accelerated KV-cache compression and decompression engine that reduces memory bandwidth requirements by up to 4$\times$. When evaluated on state-of-the-art LLM models, CXL-SpecKV achieves up to 3.2$\times$ higher throughput compared to GPU-only baselines, while reducing memory costs by 2.8$\times$ and maintaining accuracy. Our system demonstrates that intelligent memory disaggregation combined with speculative execution can effectively address the memory wall challenge in large-scale LLM serving. Our code implementation has been open-sourced at https://github.com/FastLM/CXL-SpecKV.
Abstract:Transformers have revolutionized natural language processing, but their quadratic complexity with respect to sequence length remains a fundamental bottleneck for long-range modeling. While sparse attention mechanisms like RingAttention reduce computational costs by restricting attention to local neighborhoods, they suffer from limited receptive fields and lack of adaptability. We present \PiAttention, a periodic sparse Transformer that factorizes attention into ring-local neighborhoods, deterministic $π$-stride skips, and an adaptive fusion gate. The periodic structure provides predictable coverage of distant tokens, while the sparse footprint keeps the per-layer complexity linear in context length. We prove that \PiAttention achieves $\mathcal{O}(kL + π\log L)$ receptive field growth compared to $\mathcal{O}(kL)$ for RingAttention, where $k$ is the local window size, $π$ is the skip period, and $L$ is the sequence length. Extensive experiments on language modeling, retrieval, and vision-language tasks demonstrate that \PiAttention matches or surpasses dense attention quality with 8.3\% lower perplexity than RingAttention while using 50\% fewer GPUs for the same context length. Our detailed ablations and visualizations reveal the importance of periodic skips, adaptive fusion, and head-level sparsity coordination for efficient long-context modeling.
Abstract:Neural video compression (NVC) technologies have advanced rapidly in recent years, yielding state-of-the-art schemes such as DCVC-RT that offer superior compression efficiency to H.266/VVC and real-time encoding/decoding capabilities. Nonetheless, existing NVC schemes have several limitations, including inefficiency in dealing with disocclusion and new content, interframe error propagation and accumulation, among others. To eliminate these limitations, we borrow the idea from classic video coding schemes, which allow intra coding within inter-coded frames. With the intra coding tool enabled, disocclusion and new content are properly handled, and interframe error propagation is naturally intercepted without the need for manual refresh mechanisms. We present an NVC framework with unified intra and inter coding, where every frame is processed by a single model that is trained to perform intra/inter coding adaptively. Moreover, we propose a simultaneous two-frame compression design to exploit interframe redundancy not only forwardly but also backwardly. Experimental results show that our scheme outperforms DCVC-RT by an average of 10.7\% BD-rate reduction, delivers more stable bitrate and quality per frame, and retains real-time encoding/decoding performances. Code and models will be released.
Abstract:Multimodal large language models (MLLMs) have achieved remarkable success across diverse vision-language tasks, yet they remain highly susceptible to hallucinations, producing content that is fluent but inconsistent with visual evidence. Such hallucinations, spanning objects, attributes, and relations, persist even in larger models, while existing mitigation approaches often require additional finetuning, handcrafted priors, or trade-offs that compromise informativeness and scalability. To address this limitation, we propose a training-free, self-supervised method for hallucination mitigation. Our approach introduces a novel hallucination amplification mechanism: a caption is projected into the visual space via a text-to-image model to reveal implicit hallucination signals, serving as a negative anchor, while the original image provides a positive anchor. Leveraging these dual anchors, we edit decoder hidden states by pulling representations toward faithful semantics and pushing them away from hallucination directions. This correction requires no human priors or additional training costs, ensuring both effectiveness and efficiency. Extensive experiments across multiple benchmarks show that our method significantly reduces hallucinations at the object, attribute, and relation levels while largely preserving recall and caption richness, e.g., achieving a hallucination reduction by over 5% using LLaVA-v1.5-7B on CHAIR. Furthermore, results on diverse architectures, including LLaVA-NEXT-7B, Cambrian-8B, and InstructBLIP-7B, validate strong cross-architecture generalization. More importantly, when applied to hallucination-free captions, our method introduces almost no side effects, underscoring its robustness and practical plug-and-play applicability. The implementation will be publicly available.
Abstract:In-loop filtering (ILF) is a key technology in video coding standards to reduce artifacts and enhance visual quality. Recently, neural network-based ILF schemes have achieved remarkable coding gains, emerging as a powerful candidate for next-generation video coding standards. However, the use of deep neural networks (DNN) brings significant computational and time complexity or high demands for dedicated hardware, making it challenging for general use. To address this limitation, we study a practical ILF solution by adopting look-up tables (LUTs). After training a DNN with a restricted reference range for ILF, all possible inputs are traversed, and the output values of the DNN are cached into LUTs. During the coding process, the filtering process is performed by simply retrieving the filtered pixel through locating the input pixels and interpolating between the cached values, instead of relying on heavy inference computations. In this paper, we propose a universal LUT-based ILF framework, termed LUT-ILF++. First, we introduce the cooperation of multiple kinds of filtering LUTs and propose a series of customized indexing mechanisms to enable better filtering reference perception with limited storage consumption. Second, we propose the cross-component indexing mechanism to enable the filtering of different color components jointly. Third, in order to make our solution practical for coding uses, we propose the LUT compaction scheme to enable the LUT pruning, achieving a lower storage cost of the entire solution. The proposed framework is implemented in the VVC reference software. Experimental results show that the proposed framework achieves on average 0.82%/2.97%/1.63% and 0.85%/4.11%/2.06% bitrate reduction for common test sequences, under the AI and RA configurations, respectively. Compared to DNN-based solutions, our proposed solution has much lower time complexity and storage cost.
Abstract:CPU-based trusted execution environments (TEEs) and differential privacy (DP) have gained wide applications for private inference. Due to high inference latency in TEEs, researchers use partition-based approaches that offload linear model components to GPUs. However, dense nonlinear layers of large language models (LLMs) result in significant communication overhead between TEEs and GPUs. DP-based approaches apply random noise to protect data privacy, but this compromises LLM performance and semantic understanding. To overcome the above drawbacks, this paper proposes CMIF, a Confidential and efficient Model Inference Framework. CMIF confidentially deploys the embedding layer in the client-side TEE and subsequent layers on GPU servers. Meanwhile, it optimizes the Report-Noisy-Max mechanism to protect sensitive inputs with a slight decrease in model performance. Extensive experiments on Llama-series models demonstrate that CMIF reduces additional inference overhead in TEEs while preserving user data privacy.
Abstract:Neural video codecs (NVCs), leveraging the power of end-to-end learning, have demonstrated remarkable coding efficiency improvements over traditional video codecs. Recent research has begun to pay attention to the quality structures in NVCs, optimizing them by introducing explicit hierarchical designs. However, less attention has been paid to the reference structure design, which fundamentally should be aligned with the hierarchical quality structure. In addition, there is still significant room for further optimization of the hierarchical quality structure. To address these challenges in NVCs, we propose EHVC, an efficient hierarchical neural video codec featuring three key innovations: (1) a hierarchical multi-reference scheme that draws on traditional video codec design to align reference and quality structures, thereby addressing the reference-quality mismatch; (2) a lookahead strategy to utilize an encoder-side context from future frames to enhance the quality structure; (3) a layer-wise quality scale with random quality training strategy to stabilize quality structures during inference. With these improvements, EHVC achieves significantly superior performance to the state-of-the-art NVCs. Code will be released in: https://github.com/bytedance/NEVC.




Abstract:Tokenization plays a critical role in language modeling, yet existing approaches such as Byte-Pair Encoding (BPE) or WordPiece operate purely on frequency statistics, ignoring the underlying semantic structure of text. This leads to over-tokenization of semantically redundant spans and underutilization of contextual coherence, particularly in long-context scenarios. In this work, we propose \textbf{SemToken}, a semantic-aware tokenization framework that jointly reduces token redundancy and improves computation efficiency. SemToken first extracts contextual semantic embeddings via lightweight encoders and performs local semantic clustering to merge semantically equivalent tokens. Then, it allocates heterogeneous token granularity based on semantic density, allowing finer-grained tokenization in content-rich regions and coarser compression in repetitive or low-entropy spans. SemToken can be seamlessly integrated with modern language models and attention acceleration methods. Experiments on long-context language modeling benchmarks such as WikiText-103 and LongBench show that SemToken achieves up to $2.4\times$ reduction in token count and $1.9\times$ speedup, with negligible or no degradation in perplexity and downstream accuracy. Our findings suggest that semantic structure offers a promising new axis for optimizing tokenization and computation in large language models.