Fred
Abstract:Recently, the recurrent neural network transducer (RNN-T) architecture has become an emerging trend in end-to-end automatic speech recognition research due to its advantages of being capable for online streaming speech recognition. However, RNN-T training is made difficult by the huge memory requirements, and complicated neural structure. A common solution to ease the RNN-T training is to employ connectionist temporal classification (CTC) model along with RNN language model (RNNLM) to initialize the RNN-T parameters. In this work, we conversely leverage external alignments to seed the RNN-T model. Two different pre-training solutions are explored, referred to as encoder pre-training, and whole-network pre-training respectively. Evaluated on Microsoft 65,000 hours anonymized production data with personally identifiable information removed, our proposed methods can obtain significant improvement. In particular, the encoder pre-training solution achieved a 10% and a 8% relative word error rate reduction when compared with random initialization and the widely used CTC+RNNLM initialization strategy, respectively. Our solutions also significantly reduce the RNN-T model latency from the baseline.
Abstract:We propose a novel neural label embedding (NLE) scheme for the domain adaptation of a deep neural network (DNN) acoustic model with unpaired data samples from source and target domains. With NLE method, we distill the knowledge from a powerful source-domain DNN into a dictionary of label embeddings, or l-vectors, one for each senone class. Each l-vector is a representation of the senone-specific output distributions of the source-domain DNN and is learned to minimize the average L2, Kullback-Leibler (KL) or symmetric KL distance to the output vectors with the same label through simple averaging or standard back-propagation. During adaptation, the l-vectors serve as the soft targets to train the target-domain model with cross-entropy loss. Without parallel data constraint as in the teacher-student learning, NLE is specially suited for the situation where the paired target-domain data cannot be simulated from the source-domain data. We adapt a 6400 hours multi-conditional US English acoustic model to each of the 9 accented English (80 to 830 hours) and kids' speech (80 hours). NLE achieves up to 14.1% relative word error rate reduction over direct re-training with one-hot labels.
Abstract:While the community keeps promoting end-to-end models over conventional hybrid models, which usually are long short-term memory (LSTM) models trained with a cross entropy criterion followed by a sequence discriminative training criterion, we argue that such conventional hybrid models can still be significantly improved. In this paper, we detail our recent efforts to improve conventional hybrid LSTM acoustic models for high-accuracy and low-latency automatic speech recognition. To achieve high accuracy, we use a contextual layer trajectory LSTM (cltLSTM), which decouples the temporal modeling and target classification tasks, and incorporates future context frames to get more information for accurate acoustic modeling. We further improve the training strategy with sequence-level teacher-student learning. To obtain low latency, we design a two-head cltLSTM, in which one head has zero latency and the other head has a small latency, compared to an LSTM. When trained with Microsoft's 65 thousand hours of anonymized training data and evaluated with test sets with 1.8 million words, the proposed two-head cltLSTM model with the proposed training strategy yields a 28.2\% relative WER reduction over the conventional LSTM acoustic model, with a similar perceived latency.
Abstract:To facilitate the deployment of deep neural networks (DNNs) on resource-constrained computing systems, DNN model compression methods have been proposed. However, previous methods mainly focus on reducing the model size and/or improving hardware performance, without considering the data privacy requirement. This paper proposes a privacy-preserving model compression framework that formulates a privacy-preserving DNN weight pruning problem and develops an ADMM based solution to support different weight pruning schemes. We consider the case that the system designer will perform weight pruning on a pre-trained model provided by the client, whereas the client cannot share her confidential training dataset. To mitigate the non-availability of the training dataset, the system designer distills the knowledge of a pre-trained model into a pruned model using only randomly generated synthetic data. Then the client's effort is simply reduced to performing the retraining process using her confidential training dataset, which is similar as the DNN training process with the help of the mask function from the system designer. Both algorithmic and hardware experiments validate the effectiveness of the proposed framework.
Abstract:Accelerating DNN execution on various resource-limited computing platforms has been a long-standing problem. Prior works utilize l1-based group lasso or dynamic regularization such as ADMM to perform structured pruning on DNN models to leverage the parallel computing architectures. However, both of the pruning dimensions and pruning methods lack universality, which leads to degraded performance and limited applicability. To solve the problem, we propose a new block-based pruning framework that comprises a general and flexible structured pruning dimension as well as a powerful and efficient reweighted regularization method. Our framework is universal, which can be applied to both CNNs and RNNs, implying complete support for the two major kinds of computation-intensive layers (i.e., CONV and FC layers). To complete all aspects of the pruning-for-acceleration task, we also integrate compiler-based code optimization into our framework that can perform DNN inference in a real-time manner. To the best of our knowledge, it is the first time that the weight pruning framework achieves universal coverage for both CNNs and RNNs with real-time mobile acceleration and no accuracy compromise.
Abstract:Recurrent neural networks (RNNs) based automatic speech recognition has nowadays become prevalent on mobile devices such as smart phones. However, previous RNN compression techniques either suffer from hardware performance overhead due to irregularity or significant accuracy loss due to the preserved regularity for hardware friendliness. In this work, we propose RTMobile that leverages both a novel block-based pruning approach and compiler optimizations to accelerate RNN inference on mobile devices. Our proposed RTMobile is the first work that can achieve real-time RNN inference on mobile platforms. Experimental results demonstrate that RTMobile can significantly outperform existing RNN hardware acceleration methods in terms of inference accuracy and time. Compared with prior work on FPGA, RTMobile using Adreno 640 embedded GPU on GRU can improve the energy-efficiency by about 40$\times$ while maintaining the same inference time.
Abstract:Structured weight pruning is a representative model compression technique of DNNs for hardware efficiency and inference accelerations. Previous works in this area leave great space for improvement since sparse structures with combinations of different structured pruning schemes are not exploited fully and efficiently. To mitigate the limitations, we propose SS-Auto, a single-shot, automatic structured pruning framework that can achieve row pruning and column pruning simultaneously. We adopt soft constraint-based formulation to alleviate the strong non-convexity of l0-norm constraints used in state-of-the-art ADMM-based methods for faster convergence and fewer hyperparameters. Instead of solving the problem directly, a Primal-Proximal solution is proposed to avoid the pitfall of penalizing all weights equally, thereby enhancing the accuracy. Extensive experiments on CIFAR-10 and CIFAR-100 datasets demonstrate that the proposed framework can achieve ultra-high pruning rates while maintaining accuracy. Furthermore, significant inference speedup has been observed from the proposed framework through actual measurements on the smartphone.
Abstract:Teacher-student (T/S) has shown to be effective for domain adaptation of deep neural network acoustic models in hybrid speech recognition systems. In this work, we extend the T/S learning to large-scale unsupervised domain adaptation of an attention-based end-to-end (E2E) model through two levels of knowledge transfer: teacher's token posteriors as soft labels and one-best predictions as decoder guidance. To further improve T/S learning with the help of ground-truth labels, we propose adaptive T/S (AT/S) learning. Instead of conditionally choosing from either the teacher's soft token posteriors or the one-hot ground-truth label, in AT/S, the student always learns from both the teacher and the ground truth with a pair of adaptive weights assigned to the soft and one-hot labels quantifying the confidence on each of the knowledge sources. The confidence scores are dynamically estimated at each decoder step as a function of the soft and one-hot labels. With 3400 hours parallel close-talk and far-field Microsoft Cortana data for domain adaptation, T/S and AT/S achieve 6.3% and 10.3% relative word error rate improvement over a strong E2E model trained with the same amount of far-field data.
Abstract:Predicting words and subword units (WSUs) as the output has shown to be effective for the attention-based encoder-decoder (AED) model in end-to-end speech recognition. However, as one input to the decoder recurrent neural network (RNN), each WSU embedding is learned independently through context and acoustic information in a purely data-driven fashion. Little effort has been made to explicitly model the morphological relationships among WSUs. In this work, we propose a novel character-aware (CA) AED model in which each WSU embedding is computed by summarizing the embeddings of its constituent characters using a CA-RNN. This WSU-independent CA-RNN is jointly trained with the encoder, the decoder and the attention network of a conventional AED to predict WSUs. With CA-AED, the embeddings of morphologically similar WSUs are naturally and directly correlated through the CA-RNN in addition to the semantic and acoustic relations modeled by a traditional AED. Moreover, CA-AED significantly reduces the model parameters in a traditional AED by replacing the large pool of WSU embeddings with a much smaller set of character embeddings. On a 3400 hours Microsoft Cortana dataset, CA-AED achieves up to 11.9% relative WER improvement over a strong AED baseline with 27.1% fewer model parameters.
Abstract:This paper describes a system that generates speaker-annotated transcripts of meetings by using a microphone array and a 360-degree camera. The hallmark of the system is its ability to handle overlapped speech, which has been an unsolved problem in realistic settings for over a decade. We show that this problem can be addressed by using a continuous speech separation approach. In addition, we describe an online audio-visual speaker diarization method that leverages face tracking and identification, sound source localization, speaker identification, and, if available, prior speaker information for robustness to various real world challenges. All components are integrated in a meeting transcription framework called SRD, which stands for "separate, recognize, and diarize". Experimental results using recordings of natural meetings involving up to 11 attendees are reported. The continuous speech separation improves a word error rate (WER) by 16.1% compared with a highly tuned beamformer. When a complete list of meeting attendees is available, the discrepancy between WER and speaker-attributed WER is only 1.0%, indicating accurate word-to-speaker association. This increases marginally to 1.6% when 50% of the attendees are unknown to the system.