Abstract:End-user development allows everyday users to tailor service robots or applications to their needs. One user-friendly approach is natural language programming. However, it encounters challenges such as an expansive user expression space and limited support for debugging and editing, which restrict its application in end-user programming. The emergence of large language models (LLMs) offers promising avenues for the translation and interpretation between human language instructions and the code executed by robots, but their application in end-user programming systems requires further study. We introduce Cocobo, a natural language programming system with interactive diagrams powered by LLMs. Cocobo employs LLMs to understand users' authoring intentions, generate and explain robot programs, and facilitate the conversion between executable code and flowchart representations. Our user study shows that Cocobo has a low learning curve, enabling even users with zero coding experience to customize robot programs successfully.
Abstract:Large Language Models (LLMs) demonstrate significant capabilities but face challenges such as hallucination, outdated knowledge, and non-transparent, untraceable reasoning processes. Retrieval-Augmented Generation (RAG) has emerged as a promising solution by incorporating knowledge from external databases. This enhances the accuracy and credibility of the models, particularly for knowledge-intensive tasks, and allows for continuous knowledge updates and integration of domain-specific information. RAG synergistically merges LLMs' intrinsic knowledge with the vast, dynamic repositories of external databases. This comprehensive review paper offers a detailed examination of the progression of RAG paradigms, encompassing the Naive RAG, the Advanced RAG, and the Modular RAG. It meticulously scrutinizes the tripartite foundation of RAG frameworks, which includes the retrieval , the generation and the augmentation techniques. The paper highlights the state-of-the-art technologies embedded in each of these critical components, providing a profound understanding of the advancements in RAG systems. Furthermore, this paper introduces the metrics and benchmarks for assessing RAG models, along with the most up-to-date evaluation framework. In conclusion, the paper delineates prospective avenues for research, including the identification of challenges, the expansion of multi-modalities, and the progression of the RAG infrastructure and its ecosystem.
Abstract:Out-of-distribution (OOD) detection is essential for reliable and trustworthy machine learning. Recent multi-modal OOD detection leverages textual information from in-distribution (ID) class names for visual OOD detection, yet it currently neglects the rich contextual information of ID classes. Large language models (LLMs) encode a wealth of world knowledge and can be prompted to generate descriptive features for each class. Indiscriminately using such knowledge causes catastrophic damage to OOD detection due to LLMs' hallucinations, as is observed by our analysis. In this paper, we propose to apply world knowledge to enhance OOD detection performance through selective generation from LLMs. Specifically, we introduce a consistency-based uncertainty calibration method to estimate the confidence score of each generation. We further extract visual objects from each image to fully capitalize on the aforementioned world knowledge. Extensive experiments demonstrate that our method consistently outperforms the state-of-the-art.
Abstract:Real-world data often have an open long-tailed distribution, and building a unified QA model supporting various tasks is vital for practical QA applications. However, it is non-trivial to extend previous QA approaches since they either require access to seen tasks of adequate samples or do not explicitly model samples from unseen tasks. In this paper, we define Open Long-Tailed QA (OLTQA) as learning from long-tailed distributed data and optimizing performance over seen and unseen QA tasks. We propose an OLTQA model that encourages knowledge sharing between head, tail and unseen tasks, and explicitly mines knowledge from a large pre-trained language model (LM). Specifically, we organize our model through a pool of fine-grained components and dynamically combine these components for an input to facilitate knowledge sharing. A retrieve-then-rerank frame is further introduced to select in-context examples, which guild the LM to generate text that express knowledge for QA tasks. Moreover, a two-stage training approach is introduced to pre-train the framework by knowledge distillation (KD) from the LM and then jointly train the frame and a QA model through an adaptive mutual KD method. On a large-scale OLTQA dataset we curate from 43 existing QA datasets, our model consistently outperforms the state-of-the-art. We release the code and data at \url{https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/oltqa}.
Abstract:Lifelong learning (LL) is an important ability for NLP models to learn new tasks continuously. Architecture-based approaches are reported to be effective implementations for LL models. However, it is non-trivial to extend previous approaches to domain incremental LL scenarios since they either require access to task identities in the testing phase or cannot handle samples from unseen tasks. In this paper, we propose \textbf{Diana}: a \underline{d}ynam\underline{i}c \underline{a}rchitecture-based lifelo\underline{n}g le\underline{a}rning model that tries to learn a sequence of tasks with a prompt-enhanced language model. Four types of hierarchically organized prompts are used in Diana to capture knowledge from different granularities. Specifically, we dedicate task-level prompts to capture task-specific knowledge to retain high LL performances and maintain instance-level prompts to learn knowledge shared across input samples to improve the model's generalization performance. Moreover, we dedicate separate prompts to explicitly model unseen tasks and introduce a set of prompt key vectors to facilitate knowledge sharing between tasks. Extensive experiments demonstrate that Diana outperforms state-of-the-art LL models, especially in handling unseen tasks. We release the code and data at \url{https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/diana}.
Abstract:Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single class of human action is assumed for each clip. However, we may face more complicated scenarios in the industrial applications. For example, in the real-world urban pipe system, anomaly defects are fine-grained, multi-labeled, domain-relevant. To recognize them correctly, we need to understand the detailed video content. For this reason, we propose to advance research areas of video understanding, with a shift from traditional action recognition to industrial anomaly analysis. In particular, we introduce two high-quality video benchmarks, namely QV-Pipe and CCTV-Pipe, for anomaly inspection in the real-world urban pipe systems. Based on these new datasets, we will host two competitions including (1) Video Defect Classification on QV-Pipe and (2) Temporal Defect Localization on CCTV-Pipe. In this report, we describe the details of these benchmarks, the problem definitions of competition tracks, the evaluation metric, and the result summary. We expect that, this competition would bring new opportunities and challenges for video understanding in smart city and beyond. The details of our VideoPipe challenge can be found in https://videopipe.github.io.
Abstract:QA models with lifelong learning (LL) abilities are important for practical QA applications, and architecture-based LL methods are reported to be an effective implementation for these models. However, it is non-trivial to extend previous approaches to QA tasks since they either require access to task identities in the testing phase or do not explicitly model samples from unseen tasks. In this paper, we propose Diana: a dynamic architecture-based lifelong QA model that tries to learn a sequence of QA tasks with a prompt enhanced language model. Four types of hierarchically organized prompts are used in Diana to capture QA knowledge from different granularities. Specifically, we dedicate task-level prompts to capture task-specific knowledge to retain high LL performances and maintain instance-level prompts to learn knowledge shared across different input samples to improve the model's generalization performance. Moreover, we dedicate separate prompts to explicitly model unseen tasks and introduce a set of prompt key vectors to facilitate knowledge sharing between tasks. Extensive experiments demonstrate that Diana outperforms state-of-the-art lifelong QA models, especially in handling unseen tasks.
Abstract:Service robots are envisioned to be adaptive to their working environment based on situational knowledge. Recent research focused on designing visual representation of knowledge graphs for expert users. However, how to generate an understandable interface for non-expert users remains to be explored. In this paper, we use knowledge graphs (KGs) as a common ground for knowledge exchange and develop a pattern library for designing KG interfaces for non-expert users. After identifying the types of robotic situational knowledge from the literature, we present a formative study in which participants used cards to communicate the knowledge for given scenarios. We iteratively coded the results and identified patterns for representing various types of situational knowledge. To derive design recommendations for applying the patterns, we prototyped a lab service robot and conducted Wizard-of-Oz testing. The patterns and recommendations could provide useful guidance in designing knowledge-exchange interfaces for robots.
Abstract:In this paper, we describe work in progress towards a real-time vision-based traffic flow prediction (TFP) system. The proposed method consists of three elemental operators, that are dynamic texture model based motion segmentation, feature extraction and Gaussian process (GP) regression. The objective of motion segmentation is to recognize the target regions covering the moving vehicles in the sequence of visual processes. The feature extraction operator aims to extract useful features from the target regions. The extracted features are then mapped to the number of vehicles through the operator of GP regression. A training stage using historical visual data is required for determining the parameter values of the GP. Using a low-resolution visual data set, we performed preliminary evaluations on the performance of the proposed method. The results show that our method beats a benchmark solution based on Gaussian mixture model, and has the potential to be developed into qualified and practical solutions to real-time TFP.
Abstract:In this article, we are concerned with tracking an object of interest in video stream. We propose an algorithm that is robust against occlusion, the presence of confusing colors, abrupt changes in the object feature space and changes in object size. We develop the algorithm within a Bayesian modeling framework. The state space model is used for capturing the temporal correlation in the sequence of frame images by modeling the underlying dynamics of the tracking system. The Bayesian model averaging (BMA) strategy is proposed for fusing multi-clue information in the observations. Any number of object features are allowed to be involved in the proposed framework. Every feature represents one source of information to be fused and is associated with an observation model. The state inference is performed by employing the particle filter methods. In comparison with related approaches, the BMA based tracker is shown to have robustness, expressivity, and comprehensibility.