Abstract:Current approaches for question answering (QA) over tabular data, such as NL2SQL systems, perform well for factual questions where answers are directly retrieved from tables. However, they fall short on probabilistic questions requiring reasoning under uncertainty. In this paper, we introduce a new benchmark LUCARIO and a framework for probabilistic QA over large tabular data. Our method induces Bayesian Networks from tables, translates natural language queries into probabilistic queries, and uses large language models (LLMs) to generate final answers. Empirical results demonstrate significant improvements over baselines, highlighting the benefits of hybrid symbolic-neural reasoning.
Abstract:While recent advances in large reasoning models have demonstrated remarkable performance, efficient reasoning remains critical due to the rapid growth of output length. Existing optimization approaches highlights a tendency toward "overthinking", yet lack fine-grained analysis. In this work, we focus on Self-Affirmation Reflections: redundant reflective steps that affirm prior content and often occurs after the already correct reasoning steps. Observations of both original and optimized reasoning models reveal pervasive self-affirmation reflections. Notably, these reflections sometimes lead to longer outputs in optimized models than their original counterparts. Through detailed analysis, we uncover an intriguing pattern: compared to other reflections, the leading words (i.e., the first word of sentences) in self-affirmation reflections exhibit a distinct probability bias. Motivated by this insight, we can locate self-affirmation reflections and conduct a train-free experiment demonstrating that suppressing self-affirmation reflections reduces output length without degrading accuracy across multiple models (R1-Distill-Models, QwQ-32B, and Qwen3-32B). Furthermore, we also improve current train-based method by explicitly suppressing such reflections. In our experiments, we achieve length compression of 18.7\% in train-free settings and 50.2\% in train-based settings for R1-Distill-Qwen-1.5B. Moreover, our improvements are simple yet practical and can be directly applied to existing inference frameworks, such as vLLM. We believe that our findings will provide community insights for achieving more precise length compression and step-level efficient reasoning.
Abstract:Local geometry-controllable computer-aided design (CAD) generation aims to modify local parts of CAD models automatically, enhancing design efficiency. It also ensures that the shapes of newly generated local parts follow user-specific geometric instructions (e.g., an isosceles right triangle or a rectangle with one corner cut off). However, existing methods encounter challenges in achieving this goal. Specifically, they either lack the ability to follow textual instructions or are unable to focus on the local parts. To address this limitation, we introduce GeoCAD, a user-friendly and local geometry-controllable CAD generation method. Specifically, we first propose a complementary captioning strategy to generate geometric instructions for local parts. This strategy involves vertex-based and VLLM-based captioning for systematically annotating simple and complex parts, respectively. In this way, we caption $\sim$221k different local parts in total. In the training stage, given a CAD model, we randomly mask a local part. Then, using its geometric instruction and the remaining parts as input, we prompt large language models (LLMs) to predict the masked part. During inference, users can specify any local part for modification while adhering to a variety of predefined geometric instructions. Extensive experiments demonstrate the effectiveness of GeoCAD in generation quality, validity and text-to-CAD consistency. Code will be available at https://github.com/Zhanwei-Z/GeoCAD.
Abstract:Recently, large language models (LLMs) have demonstrated impressive performance in Knowledge Graph Question Answering (KGQA) tasks, which aim to find answers based on knowledge graphs (KGs) for natural language questions. Existing LLMs-based KGQA methods typically follow the Graph Retrieval-Augmented Generation (GraphRAG) paradigm, which first retrieves reasoning paths from the large KGs, and then generates the answers based on them. However, these methods emphasize the exploration of new optimal reasoning paths in KGs while ignoring the exploitation of historical reasoning paths, which may lead to sub-optimal reasoning paths. Additionally, the complex semantics contained in questions may lead to the retrieval of inaccurate reasoning paths. To address these issues, this paper proposes a novel and training-free framework for KGQA tasks called Reward-guided Tree Search on Graph (RTSoG). RTSoG decomposes an original question into a series of simpler and well-defined sub-questions to handle the complex semantics. Then, a Self-Critic Monte Carlo Tree Search (SC-MCTS) guided by a reward model is introduced to iteratively retrieve weighted reasoning paths as contextual knowledge. Finally, it stacks the weighted reasoning paths according to their weights to generate the final answers. Extensive experiments on four datasets demonstrate the effectiveness of RTSoG. Notably, it achieves 8.7\% and 7.0\% performance improvement over the state-of-the-art method on the GrailQA and the WebQSP respectively.
Abstract:The tragedy of the commons, where individual self-interest leads to collectively disastrous outcomes, is a pervasive challenge in human society. Recent studies have demonstrated that similar phenomena can arise in generative multi-agent systems (MASs). To address this challenge, this paper explores the use of reputation systems as a remedy. We propose RepuNet, a dynamic, dual-level reputation framework that models both agent-level reputation dynamics and system-level network evolution. Specifically, driven by direct interactions and indirect gossip, agents form reputations for both themselves and their peers, and decide whether to connect or disconnect other agents for future interactions. Through two distinct scenarios, we show that RepuNet effectively mitigates the 'tragedy of the commons', promoting and sustaining cooperation in generative MASs. Moreover, we find that reputation systems can give rise to rich emergent behaviors in generative MASs, such as the formation of cooperative clusters, the social isolation of exploitative agents, and the preference for sharing positive gossip rather than negative ones.
Abstract:Prompt-tuning (PT) for large language models (LLMs) can facilitate the performance on various conventional NLP tasks with significantly fewer trainable parameters. However, our investigation reveals that PT provides limited improvement and may even degrade the primitive performance of LLMs on complex reasoning tasks. Such a phenomenon suggests that soft prompts can positively impact certain instances while negatively affecting others, particularly during the later phases of reasoning. To address these challenges, We first identify an information accumulation within the soft prompts. Through detailed analysis, we demonstrate that this phenomenon is often accompanied by erroneous information flow patterns in the deeper layers of the model, which ultimately lead to incorrect reasoning outcomes. we propose a novel method called \textbf{D}ynamic \textbf{P}rompt \textbf{C}orruption (DPC) to take better advantage of soft prompts in complex reasoning tasks, which dynamically adjusts the influence of soft prompts based on their impact on the reasoning process. Specifically, DPC consists of two stages: Dynamic Trigger and Dynamic Corruption. First, Dynamic Trigger measures the impact of soft prompts, identifying whether beneficial or detrimental. Then, Dynamic Corruption mitigates the negative effects of soft prompts by selectively masking key tokens that interfere with the reasoning process. We validate the proposed approach through extensive experiments on various LLMs and reasoning tasks, including GSM8K, MATH, and AQuA. Experimental results demonstrate that DPC can consistently enhance the performance of PT, achieving 4\%-8\% accuracy gains compared to vanilla prompt tuning, highlighting the effectiveness of our approach and its potential to enhance complex reasoning in LLMs.
Abstract:Few-shot Chain-of-Thought (CoT) significantly enhances the reasoning capabilities of large language models (LLMs), functioning as a whole to guide these models in generating reasoning steps toward final answers. However, we observe that isolated segments, words, or tokens within CoT demonstrations can unexpectedly disrupt the generation process of LLMs. The model may overly concentrate on certain local information present in the demonstration, introducing irrelevant noise into the reasoning process and potentially leading to incorrect answers. In this paper, we investigate the underlying mechanism of CoT through dynamically tracing and manipulating the inner workings of LLMs at each output step, which demonstrates that tokens exhibiting specific attention characteristics are more likely to induce the model to take things out of context; these tokens directly attend to the hidden states tied with prediction, without substantial integration of non-local information. Building upon these insights, we propose a Few-shot Attention Intervention method (FAI) that dynamically analyzes the attention patterns of demonstrations to accurately identify these tokens and subsequently make targeted adjustments to the attention weights to effectively suppress their distracting effect on LLMs. Comprehensive experiments across multiple benchmarks demonstrate consistent improvements over baseline methods, with a remarkable 5.91% improvement on the AQuA dataset, further highlighting the effectiveness of FAI.
Abstract:The rapid development and large body of literature on machine learning interatomic potentials (MLIPs) can make it difficult to know how to proceed for researchers who are not experts but wish to use these tools. The spirit of this review is to help such researchers by serving as a practical, accessible guide to the state-of-the-art in MLIPs. This review paper covers a broad range of topics related to MLIPs, including (i) central aspects of how and why MLIPs are enablers of many exciting advancements in molecular modeling, (ii) the main underpinnings of different types of MLIPs, including their basic structure and formalism, (iii) the potentially transformative impact of universal MLIPs for both organic and inorganic systems, including an overview of the most recent advances, capabilities, downsides, and potential applications of this nascent class of MLIPs, (iv) a practical guide for estimating and understanding the execution speed of MLIPs, including guidance for users based on hardware availability, type of MLIP used, and prospective simulation size and time, (v) a manual for what MLIP a user should choose for a given application by considering hardware resources, speed requirements, energy and force accuracy requirements, as well as guidance for choosing pre-trained potentials or fitting a new potential from scratch, (vi) discussion around MLIP infrastructure, including sources of training data, pre-trained potentials, and hardware resources for training, (vii) summary of some key limitations of present MLIPs and current approaches to mitigate such limitations, including methods of including long-range interactions, handling magnetic systems, and treatment of excited states, and finally (viii) we finish with some more speculative thoughts on what the future holds for the development and application of MLIPs over the next 3-10+ years.
Abstract:In medical imaging, developing generalized segmentation models that can handle multiple organs and lesions is crucial. However, the scarcity of fully annotated datasets and strict privacy regulations present significant barriers to data sharing. Federated Learning (FL) allows decentralized model training, but existing FL methods often struggle with partial labeling, leading to model divergence and catastrophic forgetting. We propose ConDistFL, a novel FL framework incorporating conditional distillation to address these challenges. ConDistFL enables effective learning from partially labeled datasets, significantly improving segmentation accuracy across distributed and non-uniform datasets. In addition to its superior segmentation performance, ConDistFL maintains computational and communication efficiency, ensuring its scalability for real-world applications. Furthermore, ConDistFL demonstrates remarkable generalizability, significantly outperforming existing FL methods in out-of-federation tests, even adapting to unseen contrast phases (e.g., non-contrast CT images) in our experiments. Extensive evaluations on 3D CT and 2D chest X-ray datasets show that ConDistFL is an efficient, adaptable solution for collaborative medical image segmentation in privacy-constrained settings.
Abstract:The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.