Abstract:The key of visible-infrared person re-identification (VIReID) lies in how to minimize the modality discrepancy between visible and infrared images. Existing methods mainly exploit the spatial information while ignoring the discriminative frequency information. To address this issue, this paper aims to reduce the modality discrepancy from the frequency domain perspective. Specifically, we propose a novel Frequency Domain Nuances Mining (FDNM) method to explore the cross-modality frequency domain information, which mainly includes an amplitude guided phase (AGP) module and an amplitude nuances mining (ANM) module. These two modules are mutually beneficial to jointly explore frequency domain visible-infrared nuances, thereby effectively reducing the modality discrepancy in the frequency domain. Besides, we propose a center-guided nuances mining loss to encourage the ANM module to preserve discriminative identity information while discovering diverse cross-modality nuances. Extensive experiments show that the proposed FDNM has significant advantages in improving the performance of VIReID. Specifically, our method outperforms the second-best method by 5.2\% in Rank-1 accuracy and 5.8\% in mAP on the SYSU-MM01 dataset under the indoor search mode, respectively. Besides, we also validate the effectiveness and generalization of our method on the challenging visible-infrared face recognition task. \textcolor{magenta}{The code will be available.}
Abstract:This study explores the idea of AI Personality or AInality suggesting that Large Language Models (LLMs) exhibit patterns similar to human personalities. Assuming that LLMs share these patterns with humans, we investigate using human-centered psychometric tests such as the Myers-Briggs Type Indicator (MBTI), Big Five Inventory (BFI), and Short Dark Triad (SD3) to identify and confirm LLM personality types. By introducing role-play prompts, we demonstrate the adaptability of LLMs, showing their ability to switch dynamically between different personality types. Using projective tests, such as the Washington University Sentence Completion Test (WUSCT), we uncover hidden aspects of LLM personalities that are not easily accessible through direct questioning. Projective tests allowed for a deep exploration of LLMs cognitive processes and thought patterns and gave us a multidimensional view of AInality. Our machine learning analysis revealed that LLMs exhibit distinct AInality traits and manifest diverse personality types, demonstrating dynamic shifts in response to external instructions. This study pioneers the application of projective tests on LLMs, shedding light on their diverse and adaptable AInality traits.
Abstract:The state-of-the-art methods for e-commerce product background generation suffer from the inefficiency of designing product-wise prompts when scaling up the production, as well as the ineffectiveness of describing fine-grained styles when customizing personalized backgrounds for some specific brands. To address these obstacles, we integrate the category commonality and personalized style into diffusion models. Concretely, we propose a Category-Wise Generator to enable large-scale background generation for the first time. A unique identifier in the prompt is assigned to each category, whose attention is located on the background by a mask-guided cross attention layer to learn the category-wise style. Furthermore, for products with specific and fine-grained requirements in layout, elements, etc, a Personality-Wise Generator is devised to learn such personalized style directly from a reference image to resolve textual ambiguities, and is trained in a self-supervised manner for more efficient training data usage. To advance research in this field, the first large-scale e-commerce product background generation dataset BG60k is constructed, which covers more than 60k product images from over 2k categories. Experiments demonstrate that our method could generate high-quality backgrounds for different categories, and maintain the personalized background style of reference images. The link to BG60k and codes will be available soon.
Abstract:Federated learning (FL) has shown remarkable success in cooperatively training deep models, while typically struggling with noisy labels. Advanced works propose to tackle label noise by a re-weighting strategy with a strong assumption, i.e., mild label noise. However, it may be violated in many real-world FL scenarios because of highly contaminated clients, resulting in extreme noise ratios, e.g., $>$90%. To tackle extremely noisy clients, we study the robustness of the re-weighting strategy, showing a pessimistic conclusion: minimizing the weight of clients trained over noisy data outperforms re-weighting strategies. To leverage models trained on noisy clients, we propose a novel approach, called negative distillation (FedNed). FedNed first identifies noisy clients and employs rather than discards the noisy clients in a knowledge distillation manner. In particular, clients identified as noisy ones are required to train models using noisy labels and pseudo-labels obtained by global models. The model trained on noisy labels serves as a `bad teacher' in knowledge distillation, aiming to decrease the risk of providing incorrect information. Meanwhile, the model trained on pseudo-labels is involved in model aggregation if not identified as a noisy client. Consequently, through pseudo-labeling, FedNed gradually increases the trustworthiness of models trained on noisy clients, while leveraging all clients for model aggregation through negative distillation. To verify the efficacy of FedNed, we conduct extensive experiments under various settings, demonstrating that FedNed can consistently outperform baselines and achieve state-of-the-art performance. Our code is available at https://github.com/linChen99/FedNed.
Abstract:Federated learning (FL) provides a decentralized machine learning paradigm where a server collaborates with a group of clients to learn a global model without accessing the clients' data. User heterogeneity is a significant challenge for FL, which together with the class-distribution imbalance further enhances the difficulty of FL. Great progress has been made in large vision-language models, such as Contrastive Language-Image Pre-training (CLIP), which paves a new way for image classification and object recognition. Inspired by the success of CLIP on few-shot and zero-shot learning, we use CLIP to optimize the federated learning between server and client models under its vision-language supervision. It is promising to mitigate the user heterogeneity and class-distribution balance due to the powerful cross-modality representation and rich open-vocabulary prior knowledge. In this paper, we propose the CLIP-guided FL (CLIP2FL) method on heterogeneous and long-tailed data. In CLIP2FL, the knowledge of the off-the-shelf CLIP model is transferred to the client-server models, and a bridge is built between the client and server. Specifically, for client-side learning, knowledge distillation is conducted between client models and CLIP to improve the ability of client-side feature representation. For server-side learning, in order to mitigate the heterogeneity and class-distribution imbalance, we generate federated features to retrain the server model. A prototype contrastive learning with the supervision of the text encoder of CLIP is introduced to generate federated features depending on the client-side gradients, and they are used to retrain a balanced server classifier.
Abstract:Personalized federated learning (pFL) enables collaborative training among multiple clients to enhance the capability of customized local models. In pFL, clients may have heterogeneous (also known as non-IID) data, which poses a key challenge in how to decouple the data knowledge into generic knowledge for global sharing and personalized knowledge for preserving local personalization. A typical way of pFL focuses on label distribution skew, and they adopt a decoupling scheme where the model is split into a common feature extractor and two prediction heads (generic and personalized). However, such a decoupling scheme cannot solve the essential problem of feature skew heterogeneity, because a common feature extractor cannot decouple the generic and personalized features. Therefore, in this paper, we rethink the architecture decoupling design for feature-skew pFL and propose an effective pFL method called FediOS. In FediOS, we reformulate the decoupling into two feature extractors (generic and personalized) and one shared prediction head. Orthogonal projections are used for clients to map the generic features into one common subspace and scatter the personalized features into different subspaces to achieve decoupling for them. In addition, a shared prediction head is trained to balance the importance of generic and personalized features during inference. Extensive experiments on four vision datasets demonstrate our method reaches state-of-the-art pFL performances under feature skew heterogeneity.
Abstract:Due to the ability to provide superior error-correction performance, the successive cancellation list (SCL) algorithm is widely regarded as one of the most promising decoding algorithms for polar codes with short-to-moderate code lengths. However, the application of SCL decoding in low-latency communication scenarios is limited due to its sequential nature. To reduce the decoding latency, developing tailored fast and efficient list decoding algorithms of specific polar substituent codes (special nodes) is a promising solution. Recently, fast list decoding algorithms are proposed by considering special nodes with low code rates. Aiming to further speedup the SCL decoding, this paper presents fast list decoding algorithms for two types of high-rate special nodes, namely single-parity-check (SPC) nodes and sequence rate one or single-parity-check (SR1/SPC) nodes. In particular, we develop two classes of fast list decoding algorithms for these nodes, where the first class uses a sequential decoding procedure to yield decoding latency that is linear with the list size, and the second further parallelizes the decoding process by pre-determining the redundant candidate paths offline. Simulation results show that the proposed list decoding algorithms are able to achieve up to 70.7\% lower decoding latency than state-of-the-art fast SCL decoders, while exhibiting the same error-correction performance.
Abstract:Surface defect inspection is an important task in industrial inspection. Deep learning-based methods have demonstrated promising performance in this domain. Nevertheless, these methods still suffer from misjudgment when encountering challenges such as low-contrast defects and complex backgrounds. To overcome these issues, we present a decision fusion network (DFNet) that incorporates the semantic decision with the feature decision to strengthen the decision ability of the network. In particular, we introduce a decision fusion module (DFM) that extracts a semantic vector from the semantic decision branch and a feature vector for the feature decision branch and fuses them to make the final classification decision. In addition, we propose a perception fine-tuning module (PFM) that fine-tunes the foreground and background during the segmentation stage. PFM generates the semantic and feature outputs that are sent to the classification decision stage. Furthermore, we present an inner-outer separation weight matrix to address the impact of label edge uncertainty during segmentation supervision. Our experimental results on the publicly available datasets including KolektorSDD2 (96.1% AP) and Magnetic-tile-defect-datasets (94.6% mAP) demonstrate the effectiveness of the proposed method.
Abstract:Surface defect inspection is a very challenging task in which surface defects usually show weak appearances or exist under complex backgrounds. Most high-accuracy defect detection methods require expensive computation and storage overhead, making them less practical in some resource-constrained defect detection applications. Although some lightweight methods have achieved real-time inference speed with fewer parameters, they show poor detection accuracy in complex defect scenarios. To this end, we develop a Global Context Aggregation Network (GCANet) for lightweight saliency detection of surface defects on the encoder-decoder structure. First, we introduce a novel transformer encoder on the top layer of the lightweight backbone, which captures global context information through a novel Depth-wise Self-Attention (DSA) module. The proposed DSA performs element-wise similarity in channel dimension while maintaining linear complexity. In addition, we introduce a novel Channel Reference Attention (CRA) module before each decoder block to strengthen the representation of multi-level features in the bottom-up path. The proposed CRA exploits the channel correlation between features at different layers to adaptively enhance feature representation. The experimental results on three public defect datasets demonstrate that the proposed network achieves a better trade-off between accuracy and running efficiency compared with other 17 state-of-the-art methods. Specifically, GCANet achieves competitive accuracy (91.79% $F_{\beta}^{w}$, 93.55% $S_\alpha$, and 97.35% $E_\phi$) on SD-saliency-900 while running 272fps on a single gpu.
Abstract:Surface defect inspection is of great importance for industrial manufacture and production. Though defect inspection methods based on deep learning have made significant progress, there are still some challenges for these methods, such as indistinguishable weak defects and defect-like interference in the background. To address these issues, we propose a transformer network with multi-stage CNN (Convolutional Neural Network) feature injection for surface defect segmentation, which is a UNet-like structure named CINFormer. CINFormer presents a simple yet effective feature integration mechanism that injects the multi-level CNN features of the input image into different stages of the transformer network in the encoder. This can maintain the merit of CNN capturing detailed features and that of transformer depressing noises in the background, which facilitates accurate defect detection. In addition, CINFormer presents a Top-K self-attention module to focus on tokens with more important information about the defects, so as to further reduce the impact of the redundant background. Extensive experiments conducted on the surface defect datasets DAGM 2007, Magnetic tile, and NEU show that the proposed CINFormer achieves state-of-the-art performance in defect detection.