Abstract:The proliferation of pre-trained models has given rise to a wide array of specialised, fine-tuned models. Model merging aims to merge the distinct capabilities of these specialised models into a unified model, requiring minimal or even no additional training. A core objective of model merging is to ensure the merged model retains the behavioural characteristics of the specialised models, typically achieved through feature alignment. We identify that features consist of two critical components: direction and magnitude. Prior research has predominantly focused on directional alignment, while the influence of magnitude remains largely neglected, despite its pronounced vulnerability to perturbations introduced by common merging operations (e.g., parameter fusion and sparsification). Such perturbations to magnitude inevitably lead to feature deviations in the merged model from the specialised models, resulting in subsequent performance degradation. To address this, we propose MAGnItude Calibration (MAGIC), a plug-and-play framework that rectifies layer-wise magnitudes in feature and weight spaces, with three variants. Specifically, our Feature Space Calibration (FSC) realigns the merged model's features using a small set of unlabelled data, while Weight Space Calibration (WSC) extends this calibration to the weight space without requiring additional data. Combining these yields Dual Space Calibration (DSC). Comprehensive experiments demonstrate that MAGIC consistently boosts performance across diverse Computer Vision tasks (+4.3% on eight datasets) and NLP tasks (+8.0% on Llama) without additional training. Our code is available at: https://github.com/lyymuwu/MAGIC
Abstract:Training and deploying multiple vision transformer (ViT) models for different resource constraints is costly and inefficient. To address this, we propose transforming a pre-trained ViT into a stratified knowledge-density super-network, where knowledge is hierarchically organized across weights. This enables flexible extraction of sub-networks that retain maximal knowledge for varying model sizes. We introduce \textbf{W}eighted \textbf{P}CA for \textbf{A}ttention \textbf{C}ontraction (WPAC), which concentrates knowledge into a compact set of critical weights. WPAC applies token-wise weighted principal component analysis to intermediate features and injects the resulting transformation and inverse matrices into adjacent layers, preserving the original network function while enhancing knowledge compactness. To further promote stratified knowledge organization, we propose \textbf{P}rogressive \textbf{I}mportance-\textbf{A}ware \textbf{D}ropout (PIAD). PIAD progressively evaluates the importance of weight groups, updates an importance-aware dropout list, and trains the super-network under this dropout regime to promote knowledge stratification. Experiments demonstrate that WPAC outperforms existing pruning criteria in knowledge concentration, and the combination with PIAD offers a strong alternative to state-of-the-art model compression and model expansion methods.
Abstract:Edge computing in person re-identification (ReID) is crucial for reducing the load on central cloud servers and ensuring user privacy. Conventional compression methods for obtaining compact models require computations for each individual student model. When multiple models of varying sizes are needed to accommodate different resource conditions, this leads to repetitive and cumbersome computations. To address this challenge, we propose a novel knowledge inheritance approach named OSKT (One-Shot Knowledge Transfer), which consolidates the knowledge of the teacher model into an intermediate carrier called a weight chain. When a downstream scenario demands a model that meets specific resource constraints, this weight chain can be expanded to the target model size without additional computation. OSKT significantly outperforms state-of-the-art compression methods, with the added advantage of one-time knowledge transfer that eliminates the need for frequent computations for each target model.
Abstract:In low-light image enhancement, Retinex-based deep learning methods have garnered significant attention due to their exceptional interpretability. These methods decompose images into mutually independent illumination and reflectance components, allows each component to be enhanced separately. In fact, achieving perfect decomposition of illumination and reflectance components proves to be quite challenging, with some residuals still existing after decomposition. In this paper, we formally name these residuals as inter-component residuals (ICR), which has been largely underestimated by previous methods. In our investigation, ICR not only affects the accuracy of the decomposition but also causes enhanced components to deviate from the ideal outcome, ultimately reducing the final synthesized image quality. To address this issue, we propose a novel Inter-correction Retinex model (IRetinex) to alleviate ICR during the decomposition and enhancement stage. In the decomposition stage, we leverage inter-component residual reduction module to reduce the feature similarity between illumination and reflectance components. In the enhancement stage, we utilize the feature similarity between the two components to detect and mitigate the impact of ICR within each enhancement unit. Extensive experiments on three low-light benchmark datasets demonstrated that by reducing ICR, our method outperforms state-of-the-art approaches both qualitatively and quantitatively.
Abstract:Large vision models like the Segment Anything Model (SAM) exhibit significant limitations when applied to downstream tasks in the wild. Consequently, reference segmentation, which leverages reference images and their corresponding masks to impart novel knowledge to the model, emerges as a promising new direction for adapting vision models. However, existing reference segmentation approaches predominantly rely on meta-learning, which still necessitates an extensive meta-training process and brings massive data and computational cost. In this study, we propose a novel approach by representing the inherent correspondence between reference-target image pairs as a pseudo video. This perspective allows the latest version of SAM, known as SAM2, which is equipped with interactive video object segmentation (iVOS) capabilities, to be adapted to downstream tasks in a lightweight manner. We term this approach Correspondence As Video for SAM (CAV-SAM). CAV-SAM comprises two key modules: the Diffusion-Based Semantic Transition (DBST) module employs a diffusion model to construct a semantic transformation sequence, while the Test-Time Geometric Alignment (TTGA) module aligns the geometric changes within this sequence through test-time fine-tuning. We evaluated CAVSAM on widely-used datasets, achieving segmentation performance improvements exceeding 5% over SOTA methods. Implementation is provided in the supplementary materials.
Abstract:Semi-supervised continual learning (SSCL) seeks to leverage both labeled and unlabeled data in a sequential learning setup, aiming to reduce annotation costs while managing continual data arrival. SSCL introduces complex challenges, including ensuring effective unlabeled learning (UL), while balancing memory stability (MS) and learning plasticity (LP). Previous SSCL efforts have typically focused on isolated aspects of the three, while this work presents USP, a divide-and-conquer framework designed to synergistically enhance these three aspects: (1) Feature Space Reservation (FSR) strategy for LP, which constructs reserved feature locations for future classes by shaping old classes into an equiangular tight frame; (2) Divide-and-Conquer Pseudo-labeling (DCP) approach for UL, which assigns reliable pseudo-labels across both high- and low-confidence unlabeled data; and (3) Class-mean-anchored Unlabeled Distillation (CUD) for MS, which reuses DCP's outputs to anchor unlabeled data to stable class means for distillation to prevent forgetting. Comprehensive evaluations show USP outperforms prior SSCL methods, with gains up to 5.94% in the last accuracy, validating its effectiveness. The code is available at https://github.com/NJUyued/USP4SSCL.
Abstract:Both limited annotation and domain shift are prevalent challenges in medical image segmentation. Traditional semi-supervised segmentation and unsupervised domain adaptation methods address one of these issues separately. However, the coexistence of limited annotation and domain shift is quite common, which motivates us to introduce a novel and challenging scenario: Mixed Domain Semi-supervised medical image Segmentation (MiDSS), where limited labeled data from a single domain and a large amount of unlabeled data from multiple domains. To tackle this issue, we propose the UST-RUN framework, which fully leverages intermediate domain information to facilitate knowledge transfer. We employ Unified Copy-paste (UCP) to construct intermediate domains, and propose a Symmetric GuiDance training strategy (SymGD) to supervise unlabeled data by merging pseudo-labels from intermediate samples. Subsequently, we introduce a Training Process aware Random Amplitude MixUp (TP-RAM) to progressively incorporate style-transition components into intermediate samples. To generate more diverse intermediate samples, we further select reliable samples with high-quality pseudo-labels, which are then mixed with other unlabeled data. Additionally, we generate sophisticated intermediate samples with high-quality pseudo-labels for unreliable samples, ensuring effective knowledge transfer for them. Extensive experiments on four public datasets demonstrate the superiority of UST-RUN. Notably, UST-RUN achieves a 12.94% improvement in Dice score on the Prostate dataset. Our code is available at https://github.com/MQinghe/UST-RUN
Abstract:In this technical report, we present our solution to the CVPR 2025 Visual Anomaly and Novelty Detection (VAND) 3.0 Workshop Challenge Track 1: Adapt & Detect: Robust Anomaly Detection in Real-World Applications. In real-world industrial anomaly detection, it is crucial to accurately identify anomalies with physical complexity, such as transparent or reflective surfaces, occlusions, and low-contrast contaminations. The recently proposed MVTec AD 2 dataset significantly narrows the gap between publicly available benchmarks and anomalies found in real-world industrial environments. To address the challenges posed by this dataset--such as complex and varying lighting conditions and real anomalies with large scale differences--we propose a fully training-free anomaly detection and segmentation method based on feature extraction using the DINOv2 model named SuperAD. Our method carefully selects a small number of normal reference images and constructs a memory bank by leveraging the strong representational power of DINOv2. Anomalies are then segmented by performing nearest neighbor matching between test image features and the memory bank. Our method achieves competitive results on both test sets of the MVTec AD 2 dataset.




Abstract:To segment medical images with distribution shifts, domain generalization (DG) has emerged as a promising setting to train models on source domains that can generalize to unseen target domains. Existing DG methods are mainly based on CNN or ViT architectures. Recently, advanced state space models, represented by Mamba, have shown promising results in various supervised medical image segmentation. The success of Mamba is primarily owing to its ability to capture long-range dependencies while keeping linear complexity with input sequence length, making it a promising alternative to CNNs and ViTs. Inspired by the success, in the paper, we explore the potential of the Mamba architecture to address distribution shifts in DG for medical image segmentation. Specifically, we propose a novel Mamba-based framework, Mamba-Sea, incorporating global-to-local sequence augmentation to improve the model's generalizability under domain shift issues. Our Mamba-Sea introduces a global augmentation mechanism designed to simulate potential variations in appearance across different sites, aiming to suppress the model's learning of domain-specific information. At the local level, we propose a sequence-wise augmentation along input sequences, which perturbs the style of tokens within random continuous sub-sequences by modeling and resampling style statistics associated with domain shifts. To our best knowledge, Mamba-Sea is the first work to explore the generalization of Mamba for medical image segmentation, providing an advanced and promising Mamba-based architecture with strong robustness to domain shifts. Remarkably, our proposed method is the first to surpass a Dice coefficient of 90% on the Prostate dataset, which exceeds previous SOTA of 88.61%. The code is available at https://github.com/orange-czh/Mamba-Sea.
Abstract:Despite the promising performance achieved by current semi-supervised models in segmenting individual medical targets, many of these models suffer a notable decrease in performance when tasked with the simultaneous segmentation of multiple targets. A vital factor could be attributed to the imbalanced scales among different targets: during simultaneously segmenting multiple targets, large targets dominate the loss, leading to small targets being misclassified as larger ones. To this end, we propose a novel method, which consists of a Collaborative Generalist and several Specialists, termed CGS. It is centered around the idea of employing a specialist for each target class, thus avoiding the dominance of larger targets. The generalist performs conventional multi-target segmentation, while each specialist is dedicated to distinguishing a specific target class from the remaining target classes and the background. Based on a theoretical insight, we demonstrate that CGS can achieve a more balanced training. Moreover, we develop cross-consistency losses to foster collaborative learning between the generalist and the specialists. Lastly, regarding their intrinsic relation that the target class of any specialized head should belong to the remaining classes of the other heads, we introduce an inter-head error detection module to further enhance the quality of pseudo-labels. Experimental results on three popular benchmarks showcase its superior performance compared to state-of-the-art methods.