Abstract:Multi-object grounding in 3D scenes involves localizing multiple objects based on natural language input. While previous work has primarily focused on single-object grounding, real-world scenarios often demand the localization of several objects. To tackle this challenge, we propose Hierarchical Contrastive Siamese Transformers (H-COST), which employs a Hierarchical Processing strategy to progressively refine object localization, enhancing the understanding of complex language instructions. Additionally, we introduce a Contrastive Siamese Transformer framework, where two networks with the identical structure are used: one auxiliary network processes robust object relations from ground-truth labels to guide and enhance the second network, the reference network, which operates on segmented point-cloud data. This contrastive mechanism strengthens the model' s semantic understanding and significantly enhances its ability to process complex point-cloud data. Our approach outperforms previous state-of-the-art methods by 9.5% on challenging multi-object grounding benchmarks.
Abstract:While large-scale language models (LLMs) have demonstrated remarkable capabilities in specific natural language processing (NLP) tasks, they may still lack proficiency compared to specialized models in certain domains, such as grammatical error correction (GEC). Drawing inspiration from the concept of curriculum learning, we have delved into refining LLMs into proficient GEC experts by devising effective curriculum learning (CL) strategies. In this paper, we introduce a novel approach, termed LLM-based curriculum learning, which capitalizes on the robust semantic comprehension and discriminative prowess inherent in LLMs to gauge the complexity of GEC training data. Unlike traditional curriculum learning techniques, our method closely mirrors human expert-designed curriculums. Leveraging the proposed LLM-based CL method, we sequentially select varying levels of curriculums ranging from easy to hard, and iteratively train and refine using the pretrianed T5 and LLaMA series models. Through rigorous testing and analysis across diverse benchmark assessments in English GEC, including the CoNLL14 test, BEA19 test, and BEA19 development sets, our approach showcases a significant performance boost over baseline models and conventional curriculum learning methodologies.