Abstract:Spatiotemporal learning plays a crucial role in mobile computing techniques to empower smart cites. While existing research has made great efforts to achieve accurate predictions on the overall dataset, they still neglect the significant performance heterogeneity across samples. In this work, we designate the performance heterogeneity as the reason for unfair spatiotemporal learning, which not only degrades the practical functions of models, but also brings serious potential risks to real-world urban applications. To fix this gap, we propose a model-independent Fairness-aware framework for SpatioTemporal Graph learning (FairSTG), which inherits the idea of exploiting advantages of well-learned samples to challenging ones with collaborative mix-up. Specifically, FairSTG consists of a spatiotemporal feature extractor for model initialization, a collaborative representation enhancement for knowledge transfer between well-learned samples and challenging ones, and fairness objectives for immediately suppressing sample-level performance heterogeneity. Experiments on four spatiotemporal datasets demonstrate that our FairSTG significantly improves the fairness quality while maintaining comparable forecasting accuracy. Case studies show FairSTG can counter both spatial and temporal performance heterogeneity by our sample-level retrieval and compensation, and our work can potentially alleviate the risks on spatiotemporal resource allocation for underrepresented urban regions.
Abstract:Spatiotemporal (ST) learning has become a crucial technique to enable smart cities and sustainable urban development. Current ST learning models capture the heterogeneity via various spatial convolution and temporal evolution blocks. However, rapid urbanization leads to fluctuating distributions in urban data and city structures over short periods, resulting in existing methods suffering generalization and data adaptation issues. Despite efforts, existing methods fail to deal with newly arrived observations and those methods with generalization capacity are limited in repeated training. Motivated by complementary learning in neuroscience, we introduce a prompt-based complementary spatiotemporal learning termed ComS2T, to empower the evolution of models for data adaptation. ComS2T partitions the neural architecture into a stable neocortex for consolidating historical memory and a dynamic hippocampus for new knowledge update. We first disentangle two disjoint structures into stable and dynamic weights, and then train spatial and temporal prompts by characterizing distribution of main observations to enable prompts adaptive to new data. This data-adaptive prompt mechanism, combined with a two-stage training process, facilitates fine-tuning of the neural architecture conditioned on prompts, thereby enabling efficient adaptation during testing. Extensive experiments validate the efficacy of ComS2T in adapting to various spatiotemporal out-of-distribution scenarios while maintaining efficient inference capabilities.
Abstract:For semi-supervised learning with imbalance classes, the long-tailed distribution of data will increase the model prediction bias toward dominant classes, undermining performance on less frequent classes. Existing methods also face challenges in ensuring the selection of sufficiently reliable pseudo-labels for model training and there is a lack of mechanisms to adjust the selection of more reliable pseudo-labels based on different training stages. To mitigate this issue, we introduce uncertainty into the modeling process for pseudo-label sampling, taking into account that the model performance on the tailed classes varies over different training stages. For example, at the early stage of model training, the limited predictive accuracy of model results in a higher rate of uncertain pseudo-labels. To counter this, we propose an Uncertainty-Aware Dynamic Threshold Selection (UDTS) approach. This approach allows the model to perceive the uncertainty of pseudo-labels at different training stages, thereby adaptively adjusting the selection thresholds for different classes. Compared to other methods such as the baseline method FixMatch, UDTS achieves an increase in accuracy of at least approximately 5.26%, 1.75%, 9.96%, and 1.28% on the natural scene image datasets CIFAR10-LT, CIFAR100-LT, STL-10-LT, and the medical image dataset TissueMNIST, respectively. The source code of UDTS is publicly available at: https://github.com/yangk/UDTS.
Abstract:The rapid advancement of large language models (LLMs) presents both opportunities and challenges, particularly concerning unintentional generation of harmful and toxic responses. While the traditional alignment methods strive to steer LLMs towards desired performance and shield them from malicious content, this study proposes a novel alignment strategy rooted in mistake analysis by exposing LLMs to flawed outputs purposefully and then conducting a thorough assessment to fully comprehend internal reasons via natural language analysis. Thus, toxic responses can be transformed into instruction tuning corpus for model alignment, and LLMs can not only be deterred from generating flawed responses but also trained to self-criticize, leveraging its innate ability to discriminate toxic content. Experimental results demonstrate that the proposed method outperforms conventional alignment techniques for safety instruction following, while maintaining superior efficiency.
Abstract:Treatment planning for chronic diseases is a critical task in medical artificial intelligence, particularly in traditional Chinese medicine (TCM). However, generating optimized sequential treatment strategies for patients with chronic diseases in different clinical encounters remains a challenging issue that requires further exploration. In this study, we proposed a TCM herbal prescription planning framework based on deep reinforcement learning for chronic disease treatment (PrescDRL). PrescDRL is a sequential herbal prescription optimization model that focuses on long-term effectiveness rather than achieving maximum reward at every step, thereby ensuring better patient outcomes. We constructed a high-quality benchmark dataset for sequential diagnosis and treatment of diabetes and evaluated PrescDRL against this benchmark. Our results showed that PrescDRL achieved a higher curative effect, with the single-step reward improving by 117% and 153% compared to doctors. Furthermore, PrescDRL outperformed the benchmark in prescription prediction, with precision improving by 40.5% and recall improving by 63%. Overall, our study demonstrates the potential of using artificial intelligence to improve clinical intelligent diagnosis and treatment in TCM.
Abstract:Accurate identification of disease genes has consistently been one of the keys to decoding a disease's molecular mechanism. Most current approaches focus on constructing biological networks and utilizing machine learning, especially, deep learning to identify disease genes, but ignore the complex relations between entities in the biological knowledge graph. In this paper, we construct a biological knowledge graph centered on diseases and genes, and develop an end-to-end Knowledge graph completion model for Disease Gene Prediction using interactional tensor decomposition (called KDGene). KDGene introduces an interaction module between the embeddings of entities and relations to tensor decomposition, which can effectively enhance the information interaction in biological knowledge. Experimental results show that KDGene significantly outperforms state-of-the-art algorithms. Furthermore, the comprehensive biological analysis of the case of diabetes mellitus confirms KDGene's ability for identifying new and accurate candidate genes. This work proposes a scalable knowledge graph completion framework to identify disease candidate genes, from which the results are promising to provide valuable references for further wet experiments.
Abstract:Knowledge graph completion (KGC) is one of the effective methods to identify new facts in knowledge graph. Except for a few methods based on graph network, most of KGC methods trend to be trained based on independent triples, while are difficult to take a full account of the information of global network connection contained in knowledge network. To address these issues, in this study, we propose a simple and effective Network-based Pre-training framework for knowledge graph completion (termed NetPeace), which takes into account the information of global network connection and local triple relationships in knowledge graph. Experiments show that in NetPeace framework, multiple KGC models yields consistent and significant improvements on benchmarks (e.g., 36.45% Hits@1 and 27.40% MRR improvements for TuckER on FB15k-237), especially dense knowledge graph. On the challenging low-resource task, NetPeace that benefits from the global features of KG achieves higher performance (104.03% MRR and 143.89% Hit@1 improvements at most) than original models.
Abstract:In this paper we describe the design and the ideas motivating a new Continual Learning benchmark for Autonomous Driving (CLAD), that focuses on the problems of object classification and object detection. The benchmark utilises SODA10M, a recently released large-scale dataset that concerns autonomous driving related problems. First, we review and discuss existing continual learning benchmarks, how they are related, and show that most are extreme cases of continual learning. To this end, we survey the benchmarks used in continual learning papers at three highly ranked computer vision conferences. Next, we introduce CLAD-C, an online classification benchmark realised through a chronological data stream that poses both class and domain incremental challenges; and CLAD-D, a domain incremental continual object detection benchmark. We examine the inherent difficulties and challenges posed by the benchmark, through a survey of the techniques and methods used by the top-3 participants in a CLAD-challenge workshop at ICCV 2021. We conclude with possible pathways to improve the current continual learning state of the art, and which directions we deem promising for future research.
Abstract:Training models continually to detect and classify objects, from new classes and new domains, remains an open problem. In this work, we conduct a thorough analysis of why and how object detection models forget catastrophically. We focus on distillation-based approaches in two-stage networks; the most-common strategy employed in contemporary continual object detection work.Distillation aims to transfer the knowledge of a model trained on previous tasks -- the teacher -- to a new model -- the student -- while it learns the new task. We show that this works well for the region proposal network, but that wrong, yet overly confident teacher predictions prevent student models from effective learning of the classification head. Our analysis provides a foundation that allows us to propose improvements for existing techniques by detecting incorrect teacher predictions, based on current ground-truth labels, and by employing an adaptive Huber loss as opposed to the mean squared error for the distillation loss in the classification heads. We evidence that our strategy works not only in a class incremental setting, but also in domain incremental settings, which constitute a realistic context, likely to be the setting of representative real-world problems.
Abstract:Continual learning needs to overcome catastrophic forgetting of the past. Memory replay of representative old training samples has been shown as an effective solution, and achieves the state-of-the-art (SOTA) performance. However, existing work is mainly built on a small memory buffer containing a few original data, which cannot fully characterize the old data distribution. In this work, we propose memory replay with data compression (MRDC) to reduce the storage cost of old training samples and thus increase their amount that can be stored in the memory buffer. Observing that the trade-off between the quality and quantity of compressed data is highly nontrivial for the efficacy of memory replay, we propose a novel method based on determinantal point processes (DPPs) to efficiently determine an appropriate compression quality for currently-arrived training samples. In this way, using a naive data compression algorithm with a properly selected quality can largely boost recent strong baselines by saving more compressed data in a limited storage space. We extensively validate this across several benchmarks of class-incremental learning and in a realistic scenario of object detection for autonomous driving.