Large Language Models (LLMs) have significantly impacted numerous domains, including Software Engineering (SE). Many recent publications have explored LLMs applied to various SE tasks. Nevertheless, a comprehensive understanding of the application, effects, and possible limitations of LLMs on SE is still in its early stages. To bridge this gap, we conducted a systematic literature review on LLM4SE, with a particular focus on understanding how LLMs can be exploited to optimize processes and outcomes. We collect and analyze 229 research papers from 2017 to 2023 to answer four key research questions (RQs). In RQ1, we categorize different LLMs that have been employed in SE tasks, characterizing their distinctive features and uses. In RQ2, we analyze the methods used in data collection, preprocessing, and application highlighting the role of well-curated datasets for successful LLM for SE implementation. RQ3 investigates the strategies employed to optimize and evaluate the performance of LLMs in SE. Finally, RQ4 examines the specific SE tasks where LLMs have shown success to date, illustrating their practical contributions to the field. From the answers to these RQs, we discuss the current state-of-the-art and trends, identifying gaps in existing research, and flagging promising areas for future study.
Graph anomaly detection (GAD) has achieved success and has been widely applied in various domains, such as fraud detection, cybersecurity, finance security, and biochemistry. However, existing graph anomaly detection algorithms focus on distinguishing individual entities (nodes or graphs) and overlook the possibility of anomalous groups within the graph. To address this limitation, this paper introduces a novel unsupervised framework for a new task called Group-level Graph Anomaly Detection (Gr-GAD). The proposed framework first employs a variant of Graph AutoEncoder (GAE) to locate anchor nodes that belong to potential anomaly groups by capturing long-range inconsistencies. Subsequently, group sampling is employed to sample candidate groups, which are then fed into the proposed Topology Pattern-based Graph Contrastive Learning (TPGCL) method. TPGCL utilizes the topology patterns of groups as clues to generate embeddings for each candidate group and thus distinct anomaly groups. The experimental results on both real-world and synthetic datasets demonstrate that the proposed framework shows superior performance in identifying and localizing anomaly groups, highlighting it as a promising solution for Gr-GAD. Datasets and codes of the proposed framework are at the github repository https://anonymous.4open.science/r/Topology-Pattern-Enhanced-Unsupervised-Group-level-Graph-Anomaly-Detection.
Encrypted traffic classification is receiving widespread attention from researchers and industrial companies. However, the existing methods only extract flow-level features, failing to handle short flows because of unreliable statistical properties, or treat the header and payload equally, failing to mine the potential correlation between bytes. Therefore, in this paper, we propose a byte-level traffic graph construction approach based on point-wise mutual information (PMI), and a model named Temporal Fusion Encoder using Graph Neural Networks (TFE-GNN) for feature extraction. In particular, we design a dual embedding layer, a GNN-based traffic graph encoder as well as a cross-gated feature fusion mechanism, which can first embed the header and payload bytes separately and then fuses them together to obtain a stronger feature representation. The experimental results on two real datasets demonstrate that TFE-GNN outperforms multiple state-of-the-art methods in fine-grained encrypted traffic classification tasks.
Knowledge graph reasoning (KGR) -- answering complex logical queries over large knowledge graphs -- represents an important artificial intelligence task, entailing a range of applications (e.g., cyber threat hunting). However, despite its surging popularity, the potential security risks of KGR are largely unexplored, which is concerning, given the increasing use of such capability in security-critical domains. This work represents a solid initial step towards bridging the striking gap. We systematize the security threats to KGR according to the adversary's objectives, knowledge, and attack vectors. Further, we present ROAR, a new class of attacks that instantiate a variety of such threats. Through empirical evaluation in representative use cases (e.g., medical decision support, cyber threat hunting, and commonsense reasoning), we demonstrate that ROAR is highly effective to mislead KGR to suggest pre-defined answers for target queries, yet with negligible impact on non-target ones. Finally, we explore potential countermeasures against ROAR, including filtering of potentially poisoning knowledge and training with adversarially augmented queries, which leads to several promising research directions.
Privacy protection raises great attention on both legal levels and user awareness. To protect user privacy, countries enact laws and regulations requiring software privacy policies to regulate their behavior. However, privacy policies are written in natural languages with many legal terms and software jargon that prevent users from understanding and even reading them. It is desirable to use NLP techniques to analyze privacy policies for helping users understand them. Furthermore, existing datasets ignore law requirements and are limited to English. In this paper, we construct the first Chinese privacy policy dataset, namely CA4P-483, to facilitate the sequence labeling tasks and regulation compliance identification between privacy policies and software. Our dataset includes 483 Chinese Android application privacy policies, over 11K sentences, and 52K fine-grained annotations. We evaluate families of robust and representative baseline models on our dataset. Based on baseline performance, we provide findings and potential research directions on our dataset. Finally, we investigate the potential applications of CA4P-483 combing regulation requirements and program analysis.
Neural Architecture Search (NAS) represents an emerging machine learning (ML) paradigm that automatically searches for models tailored to given tasks, which greatly simplifies the development of ML systems and propels the trend of ML democratization. Yet, little is known about the potential security risks incurred by NAS, which is concerning given the increasing use of NAS-generated models in critical domains. This work represents a solid initial step towards bridging the gap. Through an extensive empirical study of 10 popular NAS methods, we show that compared with their manually designed counterparts, NAS-generated models tend to suffer greater vulnerability to various malicious attacks (e.g., adversarial evasion, model poisoning, and functionality stealing). Further, with both empirical and analytical evidence, we provide possible explanations for such phenomena: given the prohibitive search space and training cost, most NAS methods favor models that converge fast at early training stages; this preference results in architectural properties associated with attack vulnerability (e.g., high loss smoothness and low gradient variance). Our findings not only reveal the relationships between model characteristics and attack vulnerability but also suggest the inherent connections underlying different attacks. Finally, we discuss potential remedies to mitigate such drawbacks, including increasing cell depth and suppressing skip connects, which lead to several promising research directions.
Graph-based Anomaly Detection (GAD) is becoming prevalent due to the powerful representation abilities of graphs as well as recent advances in graph mining techniques. These GAD tools, however, expose a new attacking surface, ironically due to their unique advantage of being able to exploit the relations among data. That is, attackers now can manipulate those relations (i.e., the structure of the graph) to allow some target nodes to evade detection. In this paper, we exploit this vulnerability by designing a new type of targeted structural poisoning attacks to a representative regression-based GAD system termed OddBall. Specially, we formulate the attack against OddBall as a bi-level optimization problem, where the key technical challenge is to efficiently solve the problem in a discrete domain. We propose a novel attack method termed BinarizedAttack based on gradient descent. Comparing to prior arts, BinarizedAttack can better use the gradient information, making it particularly suitable for solving combinatorial optimization problems. Furthermore, we investigate the attack transferability of BinarizedAttack by employing it to attack other representation-learning-based GAD systems. Our comprehensive experiments demonstrate that BinarizedAttack is very effective in enabling target nodes to evade graph-based anomaly detection tools with limited attackers' budget, and in the black-box transfer attack setting, BinarizedAttack is also tested effective and in particular, can significantly change the node embeddings learned by the GAD systems. Our research thus opens the door to studying a new type of attack against security analytic tools that rely on graph data.