Abstract:While Large Language Models (LLMs) are aligned to mitigate risks, their safety guardrails remain fragile against jailbreak attacks. This reveals limited understanding of components governing safety. Existing methods rely on local, greedy attribution that assumes independent component contributions. However, they overlook the cooperative interactions between different components in LLMs, such as attention heads, which jointly contribute to safety mechanisms. We propose \textbf{G}lobal \textbf{O}ptimization for \textbf{S}afety \textbf{V}ector Extraction (GOSV), a framework that identifies safety-critical attention heads through global optimization over all heads simultaneously. We employ two complementary activation repatching strategies: Harmful Patching and Zero Ablation. These strategies identify two spatially distinct sets of safety vectors with consistently low overlap, termed Malicious Injection Vectors and Safety Suppression Vectors, demonstrating that aligned LLMs maintain separate functional pathways for safety purposes. Through systematic analyses, we find that complete safety breakdown occurs when approximately 30\% of total heads are repatched across all models. Building on these insights, we develop a novel inference-time white-box jailbreak method that exploits the identified safety vectors through activation repatching. Our attack substantially outperforms existing white-box attacks across all test models, providing strong evidence for the effectiveness of the proposed GOSV framework on LLM safety interpretability.
Abstract:Large language models (LLMs) are increasingly applied in specialized domains such as finance and healthcare, where they introduce unique safety risks. Domain-specific datasets of harmful prompts remain scarce and still largely rely on manual construction; public datasets mainly focus on explicit harmful prompts, which modern LLM defenses can often detect and refuse. In contrast, implicit harmful prompts-expressed through indirect domain knowledge-are harder to detect and better reflect real-world threats. We identify two challenges: transforming domain knowledge into actionable constraints and increasing the implicitness of generated harmful prompts. To address them, we propose an end-to-end framework that first performs knowledge-graph-guided harmful prompt generation to systematically produce domain-relevant prompts, and then applies dual-path obfuscation rewriting to convert explicit harmful prompts into implicit variants via direct and context-enhanced rewriting. This framework yields high-quality datasets combining strong domain relevance with implicitness, enabling more realistic red-teaming and advancing LLM safety research. We release our code and datasets at GitHub.
Abstract:Large vision-language models (LVLMs) have achieved remarkable advancements in multimodal reasoning tasks. However, their widespread accessibility raises critical concerns about potential copyright infringement. Will LVLMs accurately recognize and comply with copyright regulations when encountering copyrighted content (i.e., user input, retrieved documents) in the context? Failure to comply with copyright regulations may lead to serious legal and ethical consequences, particularly when LVLMs generate responses based on copyrighted materials (e.g., retrieved book experts, news reports). In this paper, we present a comprehensive evaluation of various LVLMs, examining how they handle copyrighted content -- such as book excerpts, news articles, music lyrics, and code documentation when they are presented as visual inputs. To systematically measure copyright compliance, we introduce a large-scale benchmark dataset comprising 50,000 multimodal query-content pairs designed to evaluate how effectively LVLMs handle queries that could lead to copyright infringement. Given that real-world copyrighted content may or may not include a copyright notice, the dataset includes query-content pairs in two distinct scenarios: with and without a copyright notice. For the former, we extensively cover four types of copyright notices to account for different cases. Our evaluation reveals that even state-of-the-art closed-source LVLMs exhibit significant deficiencies in recognizing and respecting the copyrighted content, even when presented with the copyright notice. To solve this limitation, we introduce a novel tool-augmented defense framework for copyright compliance, which reduces infringement risks in all scenarios. Our findings underscore the importance of developing copyright-aware LVLMs to ensure the responsible and lawful use of copyrighted content.
Abstract:Deep neural networks (DNNs) underpin critical applications yet remain vulnerable to backdoor attacks, typically reliant on heuristic brute-force methods. Despite significant empirical advancements in backdoor research, the lack of rigorous theoretical analysis limits understanding of underlying mechanisms, constraining attack predictability and adaptability. Therefore, we provide a theoretical analysis targeting backdoor attacks, focusing on how sparse decision boundaries enable disproportionate model manipulation. Based on this finding, we derive a closed-form, ambiguous boundary region, wherein negligible relabeled samples induce substantial misclassification. Influence function analysis further quantifies significant parameter shifts caused by these margin samples, with minimal impact on clean accuracy, formally grounding why such low poison rates suffice for efficacious attacks. Leveraging these insights, we propose Eminence, an explainable and robust black-box backdoor framework with provable theoretical guarantees and inherent stealth properties. Eminence optimizes a universal, visually subtle trigger that strategically exploits vulnerable decision boundaries and effectively achieves robust misclassification with exceptionally low poison rates (< 0.1%, compared to SOTA methods typically requiring > 1%). Comprehensive experiments validate our theoretical discussions and demonstrate the effectiveness of Eminence, confirming an exponential relationship between margin poisoning and adversarial boundary manipulation. Eminence maintains > 90% attack success rate, exhibits negligible clean-accuracy loss, and demonstrates high transferability across diverse models, datasets and scenarios.
Abstract:In this paper, we propose a Differentially Private Stochastic Gradient Push with Compressed communication (termed DP-CSGP) for decentralized learning over directed graphs. Different from existing works, the proposed algorithm is designed to maintain high model utility while ensuring both rigorous differential privacy (DP) guarantees and efficient communication. For general non-convex and smooth objective functions, we show that the proposed algorithm achieves a tight utility bound of $\mathcal{O}\left( \sqrt{d\log \left( \frac{1}δ \right)}/(\sqrt{n}Jε) \right)$ ($J$ and $d$ are the number of local samples and the dimension of decision variables, respectively) with $\left(ε, δ\right)$-DP guarantee for each node, matching that of decentralized counterparts with exact communication. Extensive experiments on benchmark tasks show that, under the same privacy budget, DP-CSGP achieves comparable model accuracy with significantly lower communication cost than existing decentralized counterparts with exact communication.
Abstract:Modern text-to-speech (TTS) systems, particularly those built on Large Audio-Language Models (LALMs), generate high-fidelity speech that faithfully reproduces input text and mimics specified speaker identities. While prior misuse studies have focused on speaker impersonation, this work explores a distinct content-centric threat: exploiting TTS systems to produce speech containing harmful content. Realizing such threats poses two core challenges: (1) LALM safety alignment frequently rejects harmful prompts, yet existing jailbreak attacks are ill-suited for TTS because these systems are designed to faithfully vocalize any input text, and (2) real-world deployment pipelines often employ input/output filters that block harmful text and audio. We present HARMGEN, a suite of five attacks organized into two families that address these challenges. The first family employs semantic obfuscation techniques (Concat, Shuffle) that conceal harmful content within text. The second leverages audio-modality exploits (Read, Spell, Phoneme) that inject harmful content through auxiliary audio channels while maintaining benign textual prompts. Through evaluation across five commercial LALMs-based TTS systems and three datasets spanning two languages, we demonstrate that our attacks substantially reduce refusal rates and increase the toxicity of generated speech. We further assess both reactive countermeasures deployed by audio-streaming platforms and proactive defenses implemented by TTS providers. Our analysis reveals critical vulnerabilities: deepfake detectors underperform on high-fidelity audio; reactive moderation can be circumvented by adversarial perturbations; while proactive moderation detects 57-93% of attacks. Our work highlights a previously underexplored content-centric misuse vector for TTS and underscore the need for robust cross-modal safeguards throughout training and deployment.
Abstract:In deployment and application, large language models (LLMs) typically undergo safety alignment to prevent illegal and unethical outputs. However, the continuous advancement of jailbreak attack techniques, designed to bypass safety mechanisms with adversarial prompts, has placed increasing pressure on the security defenses of LLMs. Strengthening resistance to jailbreak attacks requires an in-depth understanding of the security mechanisms and vulnerabilities of LLMs. However, the vast number of parameters and complex structure of LLMs make analyzing security weaknesses from an internal perspective a challenging task. This paper presents NeuroBreak, a top-down jailbreak analysis system designed to analyze neuron-level safety mechanisms and mitigate vulnerabilities. We carefully design system requirements through collaboration with three experts in the field of AI security. The system provides a comprehensive analysis of various jailbreak attack methods. By incorporating layer-wise representation probing analysis, NeuroBreak offers a novel perspective on the model's decision-making process throughout its generation steps. Furthermore, the system supports the analysis of critical neurons from both semantic and functional perspectives, facilitating a deeper exploration of security mechanisms. We conduct quantitative evaluations and case studies to verify the effectiveness of our system, offering mechanistic insights for developing next-generation defense strategies against evolving jailbreak attacks.
Abstract:Recent advances in Trajectory Optimization (TO) models have achieved remarkable success in offline reinforcement learning. However, their vulnerabilities against backdoor attacks are poorly understood. We find that existing backdoor attacks in reinforcement learning are based on reward manipulation, which are largely ineffective against the TO model due to its inherent sequence modeling nature. Moreover, the complexities introduced by high-dimensional action spaces further compound the challenge of action manipulation. To address these gaps, we propose TrojanTO, the first action-level backdoor attack against TO models. TrojanTO employs alternating training to enhance the connection between triggers and target actions for attack effectiveness. To improve attack stealth, it utilizes precise poisoning via trajectory filtering for normal performance and batch poisoning for trigger consistency. Extensive evaluations demonstrate that TrojanTO effectively implants backdoor attacks across diverse tasks and attack objectives with a low attack budget (0.3\% of trajectories). Furthermore, TrojanTO exhibits broad applicability to DT, GDT, and DC, underscoring its scalability across diverse TO model architectures.
Abstract:Deep reinforcement learning (DRL) has achieved remarkable success in a wide range of sequential decision-making domains, including robotics, healthcare, smart grids, and finance. Recent research demonstrates that attackers can efficiently exploit system vulnerabilities during the training phase to execute backdoor attacks, producing malicious actions when specific trigger patterns are present in the state observations. However, most existing backdoor attacks rely primarily on simplistic and heuristic trigger configurations, overlooking the potential efficacy of trigger optimization. To address this gap, we introduce TooBadRL (Trigger Optimization to Boost Effectiveness of Backdoor Attacks on DRL), the first framework to systematically optimize DRL backdoor triggers along three critical axes, i.e., temporal, spatial, and magnitude. Specifically, we first introduce a performance-aware adaptive freezing mechanism for injection timing. Then, we formulate dimension selection as a cooperative game, utilizing Shapley value analysis to identify the most influential state variable for the injection dimension. Furthermore, we propose a gradient-based adversarial procedure to optimize the injection magnitude under environment constraints. Evaluations on three mainstream DRL algorithms and nine benchmark tasks show that TooBadRL significantly improves attack success rates, while ensuring minimal degradation of normal task performance. These results highlight the previously underappreciated importance of principled trigger optimization in DRL backdoor attacks. The source code of TooBadRL can be found at https://github.com/S3IC-Lab/TooBadRL.




Abstract:Not Safe/Suitable for Work (NSFW) content is rampant on social networks and poses serious harm to citizens, especially minors. Current detection methods mainly rely on deep learning-based image recognition and classification. However, NSFW images are now presented in increasingly sophisticated ways, often using image details and complex semantics to obscure their true nature or attract more views. Although still understandable to humans, these images often evade existing detection methods, posing a significant threat. Further complicating the issue, varying regulations across platforms and regions create additional challenges for effective moderation, leading to detection bias and reduced accuracy. To address this, we propose VModA, a general and effective framework that adapts to diverse moderation rules and handles complex, semantically rich NSFW content across categories. Experimental results show that VModA significantly outperforms existing methods, achieving up to a 54.3% accuracy improvement across NSFW types, including those with complex semantics. Further experiments demonstrate that our method exhibits strong adaptability across categories, scenarios, and base VLMs. We also identified inconsistent and controversial label samples in public NSFW benchmark datasets, re-annotated them, and submitted corrections to the original maintainers. Two datasets have confirmed the updates so far. Additionally, we evaluate VModA in real-world scenarios to demonstrate its practical effectiveness.