Abstract:As model sizes and training datasets continue to increase, large-scale model training frameworks reduce memory consumption by various sharding techniques. However, the huge communication overhead reduces the training efficiency, especially in public cloud environments with varying network bandwidths. In this paper, we rethink the impact of memory consumption and communication overhead on the training speed of large language model, and propose a memory-communication balanced \underline{Pa}rtial \underline{R}edundancy \underline{O}ptimizer (PaRO). PaRO reduces the amount and frequency of inter-group communication by grouping GPU clusters and introducing minor intra-group memory redundancy, thereby improving the training efficiency of the model. Additionally, we propose a Hierarchical Overlapping Ring (HO-Ring) communication topology to enhance communication efficiency between nodes or across switches in large model training. Our experiments demonstrate that the HO-Ring algorithm improves communication efficiency by 32.6\% compared to the traditional Ring algorithm. Compared to the baseline ZeRO, PaRO significantly improves training throughput by 1.2x-2.6x and achieves a near-linear scalability. Therefore, the PaRO strategy provides more fine-grained options for the trade-off between memory consumption and communication overhead in different training scenarios.
Abstract:Click-through rate (CTR) prediction is a crucial issue in recommendation systems. There has been an emergence of various public CTR datasets. However, existing datasets primarily suffer from the following limitations. Firstly, users generally click different types of items from multiple scenarios, and modeling from multiple scenarios can provide a more comprehensive understanding of users. Existing datasets only include data for the same type of items from a single scenario. Secondly, multi-modal features are essential in multi-scenario prediction as they address the issue of inconsistent ID encoding between different scenarios. The existing datasets are based on ID features and lack multi-modal features. Third, a large-scale dataset can provide a more reliable evaluation of models, fully reflecting the performance differences between models. The scale of existing datasets is around 100 million, which is relatively small compared to the real-world CTR prediction. To address these limitations, we propose AntM$^{2}$C, a Multi-Scenario Multi-Modal CTR dataset based on industrial data from Alipay. Specifically, AntM$^{2}$C provides the following advantages: 1) It covers CTR data of 5 different types of items, providing insights into the preferences of users for different items, including advertisements, vouchers, mini-programs, contents, and videos. 2) Apart from ID-based features, AntM$^{2}$C also provides 2 multi-modal features, raw text and image features, which can effectively establish connections between items with different IDs. 3) AntM$^{2}$C provides 1 billion CTR data with 200 features, including 200 million users and 6 million items. It is currently the largest-scale CTR dataset available. Based on AntM$^{2}$C, we construct several typical CTR tasks and provide comparisons with baseline methods. The dataset homepage is available at https://www.atecup.cn/home.
Abstract:Graph neural networks (GNNs) for temporal graphs have recently attracted increasing attentions, where a common assumption is that the class set for nodes is closed. However, in real-world scenarios, it often faces the open set problem with the dynamically increased class set as the time passes by. This will bring two big challenges to the existing dynamic GNN methods: (i) How to dynamically propagate appropriate information in an open temporal graph, where new class nodes are often linked to old class nodes. This case will lead to a sharp contradiction. This is because typical GNNs are prone to make the embeddings of connected nodes become similar, while we expect the embeddings of these two interactive nodes to be distinguishable since they belong to different classes. (ii) How to avoid catastrophic knowledge forgetting over old classes when learning new classes occurred in temporal graphs. In this paper, we propose a general and principled learning approach for open temporal graphs, called OTGNet, with the goal of addressing the above two challenges. We assume the knowledge of a node can be disentangled into class-relevant and class-agnostic one, and thus explore a new message passing mechanism by extending the information bottleneck principle to only propagate class-agnostic knowledge between nodes of different classes, avoiding aggregating conflictive information. Moreover, we devise a strategy to select both important and diverse triad sub-graph structures for effective class-incremental learning. Extensive experiments on three real-world datasets of different domains demonstrate the superiority of our method, compared to the baselines.
Abstract:Deep learning models have been deployed in numerous real-world applications such as autonomous driving and surveillance. However, these models are vulnerable in adversarial environments. Backdoor attack is emerging as a severe security threat which injects a backdoor trigger into a small portion of training data such that the trained model behaves normally on benign inputs but gives incorrect predictions when the specific trigger appears. While most research in backdoor attacks focuses on image classification, backdoor attacks on object detection have not been explored but are of equal importance. Object detection has been adopted as an important module in various security-sensitive applications such as autonomous driving. Therefore, backdoor attacks on object detection could pose severe threats to human lives and properties. We propose four kinds of backdoor attacks for object detection task: 1) Object Generation Attack: a trigger can falsely generate an object of the target class; 2) Regional Misclassification Attack: a trigger can change the prediction of a surrounding object to the target class; 3) Global Misclassification Attack: a single trigger can change the predictions of all objects in an image to the target class; and 4) Object Disappearance Attack: a trigger can make the detector fail to detect the object of the target class. We develop appropriate metrics to evaluate the four backdoor attacks on object detection. We perform experiments using two typical object detection models -- Faster-RCNN and YOLOv3 on different datasets. More crucially, we demonstrate that even fine-tuning on another benign dataset cannot remove the backdoor hidden in the object detection model. To defend against these backdoor attacks, we propose Detector Cleanse, an entropy-based run-time detection framework to identify poisoned testing samples for any deployed object detector.
Abstract:Face recognition is greatly improved by deep convolutional neural networks (CNNs). Recently, these face recognition models have been used for identity authentication in security sensitive applications. However, deep CNNs are vulnerable to adversarial patches, which are physically realizable and stealthy, raising new security concerns on the real-world applications of these models. In this paper, we evaluate the robustness of face recognition models using adversarial patches based on transferability, where the attacker has limited accessibility to the target models. First, we extend the existing transfer-based attack techniques to generate transferable adversarial patches. However, we observe that the transferability is sensitive to initialization and degrades when the perturbation magnitude is large, indicating the overfitting to the substitute models. Second, we propose to regularize the adversarial patches on the low dimensional data manifold. The manifold is represented by generative models pre-trained on legitimate human face images. Using face-like features as adversarial perturbations through optimization on the manifold, we show that the gaps between the responses of substitute models and the target models dramatically decrease, exhibiting a better transferability. Extensive digital world experiments are conducted to demonstrate the superiority of the proposed method in the black-box setting. We apply the proposed method in the physical world as well.
Abstract:Boundary based blackbox attack has been recognized as practical and effective, given that an attacker only needs to access the final model prediction. However, the query efficiency of it is in general high especially for high dimensional image data. In this paper, we show that such efficiency highly depends on the scale at which the attack is applied, and attacking at the optimal scale significantly improves the efficiency. In particular, we propose a theoretical framework to analyze and show three key characteristics to improve the query efficiency. We prove that there exists an optimal scale for projective gradient estimation. Our framework also explains the satisfactory performance achieved by existing boundary black-box attacks. Based on our theoretical framework, we propose Progressive-Scale enabled projective Boundary Attack (PSBA) to improve the query efficiency via progressive scaling techniques. In particular, we employ Progressive-GAN to optimize the scale of projections, which we call PSBA-PGAN. We evaluate our approach on both spatial and frequency scales. Extensive experiments on MNIST, CIFAR-10, CelebA, and ImageNet against different models including a real-world face recognition API show that PSBA-PGAN significantly outperforms existing baseline attacks in terms of query efficiency and attack success rate. We also observe relatively stable optimal scales for different models and datasets. The code is publicly available at https://github.com/AI-secure/PSBA.
Abstract:Gradient estimation and vector space projection have been studied as two distinct topics. We aim to bridge the gap between the two by investigating how to efficiently estimate gradient based on a projected low-dimensional space. We first provide lower and upper bounds for gradient estimation under both linear and nonlinear projections, and outline checkable sufficient conditions under which one is better than the other. Moreover, we analyze the query complexity for the projection-based gradient estimation and present a sufficient condition for query-efficient estimators. Built upon our theoretic analysis, we propose a novel query-efficient Nonlinear Gradient Projection-based Boundary Blackbox Attack (NonLinear-BA). We conduct extensive experiments on four image datasets: ImageNet, CelebA, CIFAR-10, and MNIST, and show the superiority of the proposed methods compared with the state-of-the-art baselines. In particular, we show that the projection-based boundary blackbox attacks are able to achieve much smaller magnitude of perturbations with 100% attack success rate based on efficient queries. Both linear and nonlinear projections demonstrate their advantages under different conditions. We also evaluate NonLinear-BA against the commercial online API MEGVII Face++, and demonstrate the high blackbox attack performance both quantitatively and qualitatively. The code is publicly available at https://github.com/AI-secure/NonLinear-BA.
Abstract:Machine learning (ML), especially deep neural networks (DNNs) have been widely used in various applications, including several safety-critical ones (e.g. autonomous driving). As a result, recent research about adversarial examples has raised great concerns. Such adversarial attacks can be achieved by adding a small magnitude of perturbation to the input to mislead model prediction. While several whitebox attacks have demonstrated their effectiveness, which assume that the attackers have full access to the machine learning models; blackbox attacks are more realistic in practice. In this paper, we propose a Query-Efficient Boundary-based blackbox Attack (QEBA) based only on model's final prediction labels. We theoretically show why previous boundary-based attack with gradient estimation on the whole gradient space is not efficient in terms of query numbers, and provide optimality analysis for our dimension reduction-based gradient estimation. On the other hand, we conducted extensive experiments on ImageNet and CelebA datasets to evaluate QEBA. We show that compared with the state-of-the-art blackbox attacks, QEBA is able to use a smaller number of queries to achieve a lower magnitude of perturbation with 100% attack success rate. We also show case studies of attacks on real-world APIs including MEGVII Face++ and Microsoft Azure.
Abstract:Neural networks are vulnerable to adversarial examples, which are malicious inputs crafted to fool pre-trained models. Adversarial examples often exhibit black-box attacking transferability, which allows that adversarial examples crafted for one model can fool another model. However, existing black-box attack methods require samples from the training data distribution to improve the transferability of adversarial examples across different models. Because of the data dependence, the fooling ability of adversarial perturbations is only applicable when training data are accessible. In this paper, we present a data-free method for crafting adversarial perturbations that can fool a target model without any knowledge about the training data distribution. In the practical setting of a black-box attack scenario where attackers do not have access to target models and training data, our method achieves high fooling rates on target models and outperforms other universal adversarial perturbation methods. Our method empirically shows that current deep learning models are still at risk even when the attackers do not have access to training data.
Abstract:Bayesian deep learning is recently regarded as an intrinsic way to characterize the weight uncertainty of deep neural networks~(DNNs). Stochastic Gradient Langevin Dynamics~(SGLD) is an effective method to enable Bayesian deep learning on large-scale datasets. Previous theoretical studies have shown various appealing properties of SGLD, ranging from the convergence properties to the generalization bounds. In this paper, we study the properties of SGLD from a novel perspective of membership privacy protection (i.e., preventing the membership attack). The membership attack, which aims to determine whether a specific sample is used for training a given DNN model, has emerged as a common threat against deep learning algorithms. To this end, we build a theoretical framework to analyze the information leakage (w.r.t. the training dataset) of a model trained using SGLD. Based on this framework, we demonstrate that SGLD can prevent the information leakage of the training dataset to a certain extent. Moreover, our theoretical analysis can be naturally extended to other types of Stochastic Gradient Markov Chain Monte Carlo (SG-MCMC) methods. Empirical results on different datasets and models verify our theoretical findings and suggest that the SGLD algorithm can not only reduce the information leakage but also improve the generalization ability of the DNN models in real-world applications.