Abstract:The use of question-answer (QA) pairs for training and evaluating large language models (LLMs) has attracted considerable attention. Yet few available QA datasets are based on knowledge from the scientific literature. Here we bridge this gap by presenting Automatic Generation of Scientific Question Answers (SciQAG), a framework for automatic generation and evaluation of scientific QA pairs sourced from published scientific literature. We fine-tune an open-source LLM to generate \num{960000} scientific QA pairs from full-text scientific papers and propose a five-dimensional metric to evaluate the quality of the generated QA pairs. We show via LLM-based evaluation that the generated QA pairs consistently achieve an average score of 2.5 out of 3 across five dimensions, indicating that our framework can distill key knowledge from papers into high-quality QA pairs at scale. We make the dataset, models, and evaluation codes publicly available.
Abstract:Self-supervised learning (SSL) provides a promising alternative for representation learning on hypergraphs without costly labels. However, existing hypergraph SSL models are mostly based on contrastive methods with the instance-level discrimination strategy, suffering from two significant limitations: (1) They select negative samples arbitrarily, which is unreliable in deciding similar and dissimilar pairs, causing training bias. (2) They often require a large number of negative samples, resulting in expensive computational costs. To address the above issues, we propose SE-HSSL, a hypergraph SSL framework with three sampling-efficient self-supervised signals. Specifically, we introduce two sampling-free objectives leveraging the canonical correlation analysis as the node-level and group-level self-supervised signals. Additionally, we develop a novel hierarchical membership-level contrast objective motivated by the cascading overlap relationship in hypergraphs, which can further reduce membership sampling bias and improve the efficiency of sample utilization. Through comprehensive experiments on 7 real-world hypergraphs, we demonstrate the superiority of our approach over the state-of-the-art method in terms of both effectiveness and efficiency.
Abstract:Localizing text in low-light environments is challenging due to visual degradations. Although a straightforward solution involves a two-stage pipeline with low-light image enhancement (LLE) as the initial step followed by detector, LLE is primarily designed for human vision instead of machine and can accumulate errors. In this work, we propose an efficient and effective single-stage approach for localizing text in dark that circumvents the need for LLE. We introduce a constrained learning module as an auxiliary mechanism during the training stage of the text detector. This module is designed to guide the text detector in preserving textual spatial features amidst feature map resizing, thus minimizing the loss of spatial information in texts under low-light visual degradations. Specifically, we incorporate spatial reconstruction and spatial semantic constraints within this module to ensure the text detector acquires essential positional and contextual range knowledge. Our approach enhances the original text detector's ability to identify text's local topological features using a dynamic snake feature pyramid network and adopts a bottom-up contour shaping strategy with a novel rectangular accumulation technique for accurate delineation of streamlined text features. In addition, we present a comprehensive low-light dataset for arbitrary-shaped text, encompassing diverse scenes and languages. Notably, our method achieves state-of-the-art results on this low-light dataset and exhibits comparable performance on standard normal light datasets. The code and dataset will be released.
Abstract:The convergence of materials science and artificial intelligence has unlocked new opportunities for gathering, analyzing, and generating novel materials sourced from extensive scientific literature. Despite the potential benefits, persistent challenges such as manual annotation, precise extraction, and traceability issues remain. Large language models have emerged as promising solutions to address these obstacles. This paper introduces Functional Materials Knowledge Graph (FMKG), a multidisciplinary materials science knowledge graph. Through the utilization of advanced natural language processing techniques, extracting millions of entities to form triples from a corpus comprising all high-quality research papers published in the last decade. It organizes unstructured information into nine distinct labels, covering Name, Formula, Acronym, Structure/Phase, Properties, Descriptor, Synthesis, Characterization Method, Application, and Domain, seamlessly integrating papers' Digital Object Identifiers. As the latest structured database for functional materials, FMKG acts as a powerful catalyst for expediting the development of functional materials and a fundation for building a more comprehensive material knowledge graph using full paper text. Furthermore, our research lays the groundwork for practical text-mining-based knowledge management systems, not only in intricate materials systems but also applicable to other specialized domains.
Abstract:Spatial-Temporal Graph (STG) data is characterized as dynamic, heterogenous, and non-stationary, leading to the continuous challenge of spatial-temporal graph learning. In the past few years, various GNN-based methods have been proposed to solely focus on mimicking the relationships among node individuals of the STG network, ignoring the significance of modeling the intrinsic features that exist in STG system over time. In contrast, modern Selective State Space Models (SSSMs) present a new approach which treat STG Network as a system, and meticulously explore the STG system's dynamic state evolution across temporal dimension. In this work, we introduce Spatial-Temporal Graph Mamba (STG-Mamba) as the first exploration of leveraging the powerful selective state space models for STG learning by treating STG Network as a system, and employing the Graph Selective State Space Block (GS3B) to precisely characterize the dynamic evolution of STG networks. STG-Mamba is formulated as an Encoder-Decoder architecture, which takes GS3B as the basic module, for efficient sequential data modeling. Furthermore, to strengthen GNN's ability of modeling STG data under the setting of SSSMs, we propose Kalman Filtering Graph Neural Networks (KFGN) for adaptive graph structure upgrading. KFGN smoothly fits in the context of selective state space evolution, and at the same time keeps linear complexity. Extensive empirical studies are conducted on three benchmark STG forecasting datasets, demonstrating the performance superiority and computational efficiency of STG-Mamba. It not only surpasses existing state-of-the-art methods in terms of STG forecasting performance, but also effectively alleviate the computational bottleneck of large-scale graph networks in reducing the computational cost of FLOPs and test inference time.
Abstract:For nonlinear inverse problems that are prevalent in imaging science, symmetries in the forward model are common. When data-driven deep learning approaches are used to solve such problems, these intrinsic symmetries can cause substantial learning difficulties. In this paper, we explain how such difficulties arise and, more importantly, how to overcome them by preprocessing the training set before any learning, i.e., symmetry breaking. We take far-field phase retrieval (FFPR), which is central to many areas of scientific imaging, as an example and show that symmetric breaking can substantially improve data-driven learning. We also formulate the mathematical principle of symmetry breaking.
Abstract:Recently, large language models (LLMs) have notably positioned them as capable tools for addressing complex optimization challenges. Despite this recognition, a predominant limitation of existing LLM-based optimization methods is their struggle to capture the relationships among decision variables when relying exclusively on numerical text prompts, especially in high-dimensional problems. Keeping this in mind, we first propose to enhance the optimization performance using multimodal LLM capable of processing both textual and visual prompts for deeper insights of the processed optimization problem. This integration allows for a more comprehensive understanding of optimization problems, akin to human cognitive processes. We have developed a multimodal LLM-based optimization framework that simulates human problem-solving workflows, thereby offering a more nuanced and effective analysis. The efficacy of this method is evaluated through extensive empirical studies focused on a well-known combinatorial optimization problem, i.e., capacitated vehicle routing problem. The results are compared against those obtained from the LLM-based optimization algorithms that rely solely on textual prompts, demonstrating the significant advantages of our multimodal approach.
Abstract:The aspiration of the next generation's autonomous driving (AD) technology relies on the dedicated integration and interaction among intelligent perception, prediction, planning, and low-level control. There has been a huge bottleneck regarding the upper bound of autonomous driving algorithm performance, a consensus from academia and industry believes that the key to surmount the bottleneck lies in data-centric autonomous driving technology. Recent advancement in AD simulation, closed-loop model training, and AD big data engine have gained some valuable experience. However, there is a lack of systematic knowledge and deep understanding regarding how to build efficient data-centric AD technology for AD algorithm self-evolution and better AD big data accumulation. To fill in the identified research gaps, this article will closely focus on reviewing the state-of-the-art data-driven autonomous driving technologies, with an emphasis on the comprehensive taxonomy of autonomous driving datasets characterized by milestone generations, key features, data acquisition settings, etc. Furthermore, we provide a systematic review of the existing benchmark closed-loop AD big data pipelines from the industrial frontier, including the procedure of closed-loop frameworks, key technologies, and empirical studies. Finally, the future directions, potential applications, limitations and concerns are discussed to arouse efforts from both academia and industry for promoting the further development of autonomous driving. The project repository is available at: https://github.com/LincanLi98/Awesome-Data-Centric-Autonomous-Driving.
Abstract:The SoccerNet 2023 challenges were the third annual video understanding challenges organized by the SoccerNet team. For this third edition, the challenges were composed of seven vision-based tasks split into three main themes. The first theme, broadcast video understanding, is composed of three high-level tasks related to describing events occurring in the video broadcasts: (1) action spotting, focusing on retrieving all timestamps related to global actions in soccer, (2) ball action spotting, focusing on retrieving all timestamps related to the soccer ball change of state, and (3) dense video captioning, focusing on describing the broadcast with natural language and anchored timestamps. The second theme, field understanding, relates to the single task of (4) camera calibration, focusing on retrieving the intrinsic and extrinsic camera parameters from images. The third and last theme, player understanding, is composed of three low-level tasks related to extracting information about the players: (5) re-identification, focusing on retrieving the same players across multiple views, (6) multiple object tracking, focusing on tracking players and the ball through unedited video streams, and (7) jersey number recognition, focusing on recognizing the jersey number of players from tracklets. Compared to the previous editions of the SoccerNet challenges, tasks (2-3-7) are novel, including new annotations and data, task (4) was enhanced with more data and annotations, and task (6) now focuses on end-to-end approaches. More information on the tasks, challenges, and leaderboards are available on https://www.soccer-net.org. Baselines and development kits can be found on https://github.com/SoccerNet.
Abstract:Emerging tools bring forth fresh approaches to work, and the field of natural science is no different. In natural science, traditional manual, serial, and labour-intensive work is being augmented by automated, parallel, and iterative processes driven by artificial intelligence-based experimental automation and more. To add new capabilities in natural science, enabling the acceleration and enrichment of automation of the discovery process, we present DARWIN, a series of tailored LLMs for natural science, mainly in physics, chemistry, and material science. This series relies on open-source LLM, incorporating structured and unstructured scientific knowledge from public datasets and literature. We fine-tuned the models using over 60,000 instruction data points, emphasizing factual correctness. During the fine-tuning, we introduce the Scientific Instruction Generation (SIG) model, automating instruction generation from scientific texts. This eliminates the need for manual extraction or domain-specific knowledge graphs and efficiently injects scientific knowledge into the model. We also explore multi-task training strategies, revealing interconnections between scientific tasks. DARWIN series not only achieves state-of-the-art results on various scientific tasks but also diminishes reliance on closed-source AI models. Our research showcases the ability of LLM in the scientific domain, with the overarching goal of fostering prosperity within the broader AI for science community.