Social media misinformation harms individuals and societies and is potentialized by fast-growing multi-modal content (i.e., texts and images), which accounts for higher "credibility" than text-only news pieces. Although existing supervised misinformation detection methods have obtained acceptable performances in key setups, they may require large amounts of labeled data from various events, which can be time-consuming and tedious. In turn, directly training a model by leveraging a publicly available dataset may fail to generalize due to domain shifts between the training data (a.k.a. source domains) and the data from target domains. Most prior work on domain shift focuses on a single modality (e.g., text modality) and ignores the scenario where sufficient unlabeled target domain data may not be readily available in an early stage. The lack of data often happens due to the dynamic propagation trend (i.e., the number of posts related to fake news increases slowly before catching the public attention). We propose a novel robust domain and cross-modal approach (\textbf{RDCM}) for multi-modal misinformation detection. It reduces the domain shift by aligning the joint distribution of textual and visual modalities through an inter-domain alignment module and bridges the semantic gap between both modalities through a cross-modality alignment module. We also propose a framework that simultaneously considers application scenarios of domain generalization (in which the target domain data is unavailable) and domain adaptation (in which unlabeled target domain data is available). Evaluation results on two public multi-modal misinformation detection datasets (Pheme and Twitter Datasets) evince the superiority of the proposed model. The formal implementation of this paper can be found in this link: https://github.com/less-and-less-bugs/RDCM
Large language models (LLMs) have showcased their capability with few-shot inference known as in-context learning. However, in-domain demonstrations are not always readily available in real scenarios, leading to cross-domain in-context learning. Besides, LLMs are still facing challenges in long-tail knowledge in unseen and unfamiliar domains. The above limitations demonstrate the necessity of Unsupervised Domain Adaptation (UDA). In this paper, we study the UDA problem under an in-context learning setting to adapt language models from the source domain to the target domain without any target labels. The core idea is to retrieve a subset of cross-domain elements that are the most similar to the query, and elicit language model to adapt in an in-context manner by learning both target domain distribution and the discriminative task signal simultaneously with the augmented cross-domain in-context examples. We devise different prompting and training strategies, accounting for different LM architectures to learn the target distribution via language modeling. With extensive experiments on Sentiment Analysis (SA) and Named Entity Recognition (NER) tasks, we thoroughly study the effectiveness of ICL for domain transfer and demonstrate significant improvements over baseline models.
Multimodal misinformation on online social platforms is becoming a critical concern due to increasing credibility and easier dissemination brought by multimedia content, compared to traditional text-only information. While existing multimodal detection approaches have achieved high performance, the lack of interpretability hinders these systems' reliability and practical deployment. Inspired by NeuralSymbolic AI which combines the learning ability of neural networks with the explainability of symbolic learning, we propose a novel logic-based neural model for multimodal misinformation detection which integrates interpretable logic clauses to express the reasoning process of the target task. To make learning effective, we parameterize symbolic logical elements using neural representations, which facilitate the automatic generation and evaluation of meaningful logic clauses. Additionally, to make our framework generalizable across diverse misinformation sources, we introduce five meta-predicates that can be instantiated with different correlations. Results on three public datasets (Twitter, Weibo, and Sarcasm) demonstrate the feasibility and versatility of our model.
Despite the much discussed capabilities of today's language models, they are still prone to silly and unexpected commonsense failures. We consider a retrospective verification approach that reflects on the correctness of LM outputs, and introduce Vera, a general-purpose model that estimates the plausibility of declarative statements based on commonsense knowledge. Trained on ~7M commonsense statements created from 19 QA datasets and two large-scale knowledge bases, and with a combination of three training objectives, Vera is a versatile model that effectively separates correct from incorrect statements across diverse commonsense domains. When applied to solving commonsense problems in the verification format, Vera substantially outperforms existing models that can be repurposed for commonsense verification, and it further exhibits generalization capabilities to unseen tasks and provides well-calibrated outputs. We find that Vera excels at filtering LM-generated commonsense knowledge and is useful in detecting erroneous commonsense statements generated by models like ChatGPT in real-world settings.
Sarcasm is a linguistic phenomenon indicating a discrepancy between literal meanings and implied intentions. Due to its sophisticated nature, it is usually challenging to be detected from the text itself. As a result, multi-modal sarcasm detection has received more attention in both academia and industries. However, most existing techniques only modeled the atomic-level inconsistencies between the text input and its accompanying image, ignoring more complex compositions for both modalities. Moreover, they neglected the rich information contained in external knowledge, e.g., image captions. In this paper, we propose a novel hierarchical framework for sarcasm detection by exploring both the atomic-level congruity based on multi-head cross attention mechanism and the composition-level congruity based on graph neural networks, where a post with low congruity can be identified as sarcasm. In addition, we exploit the effect of various knowledge resources for sarcasm detection. Evaluation results on a public multi-modal sarcasm detection dataset based on Twitter demonstrate the superiority of our proposed model.
In question answering requiring common sense, language models (e.g., GPT-3) have been used to generate text expressing background knowledge that helps improve performance. Yet the cost of working with such models is very high; in this work, we finetune smaller language models to generate useful intermediate context, referred to here as elaborations. Our framework alternates between updating two language models -- an elaboration generator and an answer predictor -- allowing each to influence the other. Using less than 0.5% of the parameters of GPT-3, our model outperforms alternatives with similar sizes and closes the gap on GPT-3 on four commonsense question answering benchmarks. Human evaluations show that the quality of the generated elaborations is high.
In this work, we study Unsupervised Domain Adaptation (UDA) in a challenging self-supervised approach. One of the difficulties is how to learn task discrimination in the absence of target labels. Unlike previous literature which directly aligns cross-domain distributions or leverages reverse gradient, we propose Domain Confused Contrastive Learning (DCCL) to bridge the source and the target domains via domain puzzles, and retain discriminative representations after adaptation. Technically, DCCL searches for a most domain-challenging direction and exquisitely crafts domain confused augmentations as positive pairs, then it contrastively encourages the model to pull representations towards the other domain, thus learning more stable and effective domain invariances. We also investigate whether contrastive learning necessarily helps with UDA when performing other data augmentations. Extensive experiments demonstrate that DCCL significantly outperforms baselines.
Fine-grained aspect extraction is an essential sub-task in aspect based opinion analysis. It aims to identify the aspect terms (a.k.a. opinion targets) of a product or service in each sentence. However, expensive annotation process is usually involved to acquire sufficient token-level labels for each domain. To address this limitation, some previous works propose domain adaptation strategies to transfer knowledge from a sufficiently labeled source domain to unlabeled target domains. But due to both the difficulty of fine-grained prediction problems and the large domain gap between domains, the performance remains unsatisfactory. This work conducts a pioneer study on leveraging sentence-level aspect category labels that can be usually available in commercial services like review sites to promote token-level transfer for the extraction purpose. Specifically, the aspect category information is used to construct pivot knowledge for transfer with assumption that the interactions between sentence-level aspect category and token-level aspect terms are invariant across domains. To this end, we propose a novel multi-level reconstruction mechanism that aligns both the fine-grained and coarse-grained information in multiple levels of abstractions. Comprehensive experiments demonstrate that our approach can fully utilize sentence-level aspect category labels to improve cross-domain aspect extraction with a large performance gain.
Information extraction (IE) aims to produce structured information from an input text, e.g., Named Entity Recognition and Relation Extraction. Various attempts have been proposed for IE via feature engineering or deep learning. However, most of them fail to associate the complex relationships inherent in the task itself, which has proven to be especially crucial. For example, the relation between 2 entities is highly dependent on their entity types. These dependencies can be regarded as complex constraints that can be efficiently expressed as logical rules. To combine such logic reasoning capabilities with learning capabilities of deep neural networks, we propose to integrate logical knowledge in the form of first-order logic into a deep learning system, which can be trained jointly in an end-to-end manner. The integrated framework is able to enhance neural outputs with knowledge regularization via logic rules, and at the same time update the weights of logic rules to comply with the characteristics of the training data. We demonstrate the effectiveness and generalization of the proposed model on multiple IE tasks.
In aspect-based sentiment analysis, most existing methods either focus on aspect/opinion terms extraction or aspect terms categorization. However, each task by itself only provides partial information to end users. To generate more detailed and structured opinion analysis, we propose a finer-grained problem, which we call category-specific aspect and opinion terms extraction. This problem involves the identification of aspect and opinion terms within each sentence, as well as the categorization of the identified terms. To this end, we propose an end-to-end multi-task attention model, where each task corresponds to aspect/opinion terms extraction for a specific category. Our model benefits from exploring the commonalities and relationships among different tasks to address the data sparsity issue. We demonstrate its state-of-the-art performance on three benchmark datasets.