Alert button
Picture for Tongzheng Ren

Tongzheng Ren

Alert button

DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

Jan 05, 2024
DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, Yuheng Zou

Viaarxiv icon

Provable Representation with Efficient Planning for Partially Observable Reinforcement Learning

Nov 20, 2023
Hongming Zhang, Tongzheng Ren, Chenjun Xiao, Dale Schuurmans, Bo Dai

Viaarxiv icon

Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding

Apr 08, 2023
Tongzheng Ren, Zhaolin Ren, Na Li, Bo Dai

Figure 1 for Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding
Viaarxiv icon

Markovian Sliced Wasserstein Distances: Beyond Independent Projections

Jan 10, 2023
Khai Nguyen, Tongzheng Ren, Nhat Ho

Figure 1 for Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Figure 2 for Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Figure 3 for Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Figure 4 for Markovian Sliced Wasserstein Distances: Beyond Independent Projections
Viaarxiv icon

Latent Variable Representation for Reinforcement Learning

Dec 17, 2022
Tongzheng Ren, Chenjun Xiao, Tianjun Zhang, Na Li, Zhaoran Wang, Sujay Sanghavi, Dale Schuurmans, Bo Dai

Figure 1 for Latent Variable Representation for Reinforcement Learning
Figure 2 for Latent Variable Representation for Reinforcement Learning
Figure 3 for Latent Variable Representation for Reinforcement Learning
Figure 4 for Latent Variable Representation for Reinforcement Learning
Viaarxiv icon

Robustify Transformers with Robust Kernel Density Estimation

Oct 11, 2022
Xing Han, Tongzheng Ren, Tan Minh Nguyen, Khai Nguyen, Joydeep Ghosh, Nhat Ho

Figure 1 for Robustify Transformers with Robust Kernel Density Estimation
Figure 2 for Robustify Transformers with Robust Kernel Density Estimation
Figure 3 for Robustify Transformers with Robust Kernel Density Estimation
Figure 4 for Robustify Transformers with Robust Kernel Density Estimation
Viaarxiv icon

Hierarchical Sliced Wasserstein Distance

Sep 30, 2022
Khai Nguyen, Tongzheng Ren, Huy Nguyen, Litu Rout, Tan Nguyen, Nhat Ho

Figure 1 for Hierarchical Sliced Wasserstein Distance
Figure 2 for Hierarchical Sliced Wasserstein Distance
Figure 3 for Hierarchical Sliced Wasserstein Distance
Figure 4 for Hierarchical Sliced Wasserstein Distance
Viaarxiv icon

Spectral Decomposition Representation for Reinforcement Learning

Aug 19, 2022
Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai

Figure 1 for Spectral Decomposition Representation for Reinforcement Learning
Figure 2 for Spectral Decomposition Representation for Reinforcement Learning
Figure 3 for Spectral Decomposition Representation for Reinforcement Learning
Figure 4 for Spectral Decomposition Representation for Reinforcement Learning
Viaarxiv icon

Making Linear MDPs Practical via Contrastive Representation Learning

Jul 14, 2022
Tianjun Zhang, Tongzheng Ren, Mengjiao Yang, Joseph E. Gonzalez, Dale Schuurmans, Bo Dai

Figure 1 for Making Linear MDPs Practical via Contrastive Representation Learning
Figure 2 for Making Linear MDPs Practical via Contrastive Representation Learning
Figure 3 for Making Linear MDPs Practical via Contrastive Representation Learning
Figure 4 for Making Linear MDPs Practical via Contrastive Representation Learning
Viaarxiv icon