Abstract:We address the problem of causal effect estimation in the presence of hidden confounders, using nonparametric instrumental variable (IV) regression. A leading strategy employs spectral features - that is, learned features spanning the top eigensubspaces of the operator linking treatments to instruments. We derive a generalization error bound for a two-stage least squares estimator based on spectral features, and gain insights into the method's performance and failure modes. We show that performance depends on two key factors, leading to a clear taxonomy of outcomes. In a good scenario, the approach is optimal. This occurs with strong spectral alignment, meaning the structural function is well-represented by the top eigenfunctions of the conditional operator, coupled with this operator's slow eigenvalue decay, indicating a strong instrument. Performance degrades in a bad scenario: spectral alignment remains strong, but rapid eigenvalue decay (indicating a weaker instrument) demands significantly more samples for effective feature learning. Finally, in the ugly scenario, weak spectral alignment causes the method to fail, regardless of the eigenvalues' characteristics. Our synthetic experiments empirically validate this taxonomy.
Abstract:We study the problem of offline imitation learning in Markov decision processes (MDPs), where the goal is to learn a well-performing policy given a dataset of state-action pairs generated by an expert policy. Complementing a recent line of work on this topic that assumes the expert belongs to a tractable class of known policies, we approach this problem from a new angle and leverage a different type of structural assumption about the environment. Specifically, for the class of linear $Q^\pi$-realizable MDPs, we introduce a new algorithm called saddle-point offline imitation learning (\SPOIL), which is guaranteed to match the performance of any expert up to an additive error $\varepsilon$ with access to $\mathcal{O}(\varepsilon^{-2})$ samples. Moreover, we extend this result to possibly non-linear $Q^\pi$-realizable MDPs at the cost of a worse sample complexity of order $\mathcal{O}(\varepsilon^{-4})$. Finally, our analysis suggests a new loss function for training critic networks from expert data in deep imitation learning. Empirical evaluations on standard benchmarks demonstrate that the neural net implementation of \SPOIL is superior to behavior cloning and competitive with state-of-the-art algorithms.
Abstract:We study the problem of reinforcement learning in infinite-horizon discounted linear Markov decision processes (MDPs), and propose the first computationally efficient algorithm achieving near-optimal regret guarantees in this setting. Our main idea is to combine two classic techniques for optimistic exploration: additive exploration bonuses applied to the reward function, and artificial transitions made to an absorbing state with maximal return. We show that, combined with a regularized approximate dynamic-programming scheme, the resulting algorithm achieves a regret of order $\tilde{\mathcal{O}} (\sqrt{d^3 (1 - \gamma)^{- 7 / 2} T})$, where $T$ is the total number of sample transitions, $\gamma \in (0,1)$ is the discount factor, and $d$ is the feature dimensionality. The results continue to hold against adversarial reward sequences, enabling application of our method to the problem of imitation learning in linear MDPs, where we achieve state-of-the-art results.
Abstract:We address the problem of causal effect estimation where hidden confounders are present, with a focus on two settings: instrumental variable regression with additional observed confounders, and proxy causal learning. Our approach uses a singular value decomposition of a conditional expectation operator, followed by a saddle-point optimization problem, which, in the context of IV regression, can be thought of as a neural net generalization of the seminal approach due to Darolles et al. [2011]. Saddle-point formulations have gathered considerable attention recently, as they can avoid double sampling bias and are amenable to modern function approximation methods. We provide experimental validation in various settings, and show that our approach outperforms existing methods on common benchmarks.
Abstract:We propose a new method for optimistic planning in infinite-horizon discounted Markov decision processes based on the idea of adding regularization to the updates of an otherwise standard approximate value iteration procedure. This technique allows us to avoid contraction and monotonicity arguments that are typically required by existing analyses of approximate dynamic programming methods, and in particular to use approximate transition functions estimated via least-squares procedures in MDPs with linear function approximation. We use our method to provide a computationally efficient algorithm for learning near-optimal policies in discounted linear kernel MDPs from a single stream of experience, and show that it achieves near-optimal statistical guarantees.