Abstract:In the field of artificial intelligence, understanding, distinguishing, expressing, and computing the negation in knowledge is a fundamental issue in knowledge processing and research. In this paper, we examine and analyze the understanding and characteristics of negation in various fields such as philosophy, logic, and linguistics etc. Based on the distinction between the concepts of contradiction and opposition, we propose that there are three different types of negation in knowledge from a conceptual perspective: contradictory negation, opposite negation, and intermediary negation. To establish a mathematical foundation that fully reflects the intrinsic connections, properties, and laws of these different forms of negation, we introduce SCOI: sets with contradictory negation, opposite negation and intermediary negation, and LCOI: logic with contradictory negation, opposite negation and intermediary negation, and we proved the main operational properties of SCOI as well as the formal inference relations in LCOI.
Abstract:Visual Emotion Recognition (VER) is a critical yet challenging task aimed at inferring emotional states of individuals based on visual cues. However, existing works focus on single domains, e.g., realistic images or stickers, limiting VER models' cross-domain generalizability. To fill this gap, we introduce an Unsupervised Cross-Domain Visual Emotion Recognition (UCDVER) task, which aims to generalize visual emotion recognition from the source domain (e.g., realistic images) to the low-resource target domain (e.g., stickers) in an unsupervised manner. Compared to the conventional unsupervised domain adaptation problems, UCDVER presents two key challenges: a significant emotional expression variability and an affective distribution shift. To mitigate these issues, we propose the Knowledge-aligned Counterfactual-enhancement Diffusion Perception (KCDP) framework. Specifically, KCDP leverages a VLM to align emotional representations in a shared knowledge space and guides diffusion models for improved visual affective perception. Furthermore, a Counterfactual-Enhanced Language-image Emotional Alignment (CLIEA) method generates high-quality pseudo-labels for the target domain. Extensive experiments demonstrate that our model surpasses SOTA models in both perceptibility and generalization, e.g., gaining 12% improvements over the SOTA VER model TGCA-PVT. The project page is at https://yinwen2019.github.io/ucdver.
Abstract:Self-taught reasoners (STaRs) enhance the mathematical reasoning abilities of large language models (LLMs) by leveraging self-generated responses for self-training. Recent studies have incorporated reward models to guide response selection or decoding, aiming to obtain higher-quality data. However, they typically allocate a uniform sampling budget across all problems, overlooking the varying utility of problems at different difficulty levels. In this work, we conduct an empirical study and find that problems near the boundary of the LLM's reasoning capability offer significantly greater learning utility than both easy and overly difficult ones. To identify and exploit such problems, we propose HS-STaR, a Hierarchical Sampling framework for Self-Taught Reasoners. Given a fixed sampling budget, HS-STaR first performs lightweight pre-sampling with a reward-guided difficulty estimation strategy to efficiently identify boundary-level problems. Subsequently, it dynamically reallocates the remaining budget toward these high-utility problems during a re-sampling phase, maximizing the generation of valuable training data. Extensive experiments across multiple reasoning benchmarks and backbone LLMs demonstrate that HS-STaR significantly outperforms other baselines without requiring additional sampling budget.
Abstract:Reinforcement Learning (RL) can directly enhance the reasoning capabilities of large language models without extensive reliance on Supervised Fine-Tuning (SFT). In this work, we revisit the traditional Policy Gradient (PG) mechanism and propose a minimalist RL approach termed Group Policy Gradient (GPG). Unlike conventional methods, GPG directly optimize the original RL objective, thus obviating the need for surrogate loss functions. As illustrated in our paper, by eliminating both the critic and reference models, and avoiding KL divergence constraints, our approach significantly simplifies the training process when compared to Group Relative Policy Optimization (GRPO). Our approach achieves superior performance without relying on auxiliary techniques or adjustments. Extensive experiments demonstrate that our method not only reduces computational costs but also consistently outperforms GRPO across various unimodal and multimodal tasks. Our code is available at https://github.com/AMAP-ML/GPG.
Abstract:Recent studies have highlighted the interplay between diffusion models and representation learning. Intermediate representations from diffusion models can be leveraged for downstream visual tasks, while self-supervised vision models can enhance the convergence and generation quality of diffusion models. However, transferring pretrained weights from vision models to diffusion models is challenging due to input mismatches and the use of latent spaces. To address these challenges, we propose Unified Self-supervised Pretraining (USP), a framework that initializes diffusion models via masked latent modeling in a Variational Autoencoder (VAE) latent space. USP achieves comparable performance in understanding tasks while significantly improving the convergence speed and generation quality of diffusion models. Our code will be publicly available at https://github.com/cxxgtxy/USP.
Abstract:Achieving both efficiency and strong discriminative ability in lightweight visual tracking is a challenge, especially on mobile and edge devices with limited computational resources. Conventional lightweight trackers often struggle with robustness under occlusion and interference, while deep trackers, when compressed to meet resource constraints, suffer from performance degradation. To address these issues, we introduce CFTrack, a lightweight tracker that integrates contrastive learning and feature matching to enhance discriminative feature representations. CFTrack dynamically assesses target similarity during prediction through a novel contrastive feature matching module optimized with an adaptive contrastive loss, thereby improving tracking accuracy. Extensive experiments on LaSOT, OTB100, and UAV123 show that CFTrack surpasses many state-of-the-art lightweight trackers, operating at 136 frames per second on the NVIDIA Jetson NX platform. Results on the HOOT dataset further demonstrate CFTrack's strong discriminative ability under heavy occlusion.
Abstract:This paper develops a novel deep learning approach for solving evolutionary equations, which integrates sequential learning strategies with an enhanced hard constraint strategy featuring trainable parameters, addressing the low computational accuracy of standard Physics-Informed Neural Networks (PINNs) in large temporal domains.Sequential learning strategies divide a large temporal domain into multiple subintervals and solve them one by one in a chronological order, which naturally respects the principle of causality and improves the stability of the PINN solution. The improved hard constraint strategy strictly ensures the continuity and smoothness of the PINN solution at time interval nodes, and at the same time passes the information from the previous interval to the next interval, which avoids the incorrect/trivial solution at the position far from the initial time. Furthermore, by investigating the requirements of different types of equations on hard constraints, we design a novel influence function with trainable parameters for hard constraints, which provides theoretical and technical support for the effective implementations of hard constraint strategies, and significantly improves the universality and computational accuracy of our method. In addition, an adaptive time-domain partitioning algorithm is proposed, which plays an important role in the application of the proposed method as well as in the improvement of computational efficiency and accuracy. Numerical experiments verify the performance of the method. The data and code accompanying this paper are available at https://github.com/zhizhi4452/HCS.
Abstract:In this demonstration, we present AnDB, an AI-native database that supports traditional OLTP workloads and innovative AI-driven tasks, enabling unified semantic analysis across structured and unstructured data. While structured data analytics is mature, challenges remain in bridging the semantic gap between user queries and unstructured data. AnDB addresses these issues by leveraging cutting-edge AI-native technologies, allowing users to perform semantic queries using intuitive SQL-like statements without requiring AI expertise. This approach eliminates the ambiguity of traditional text-to-SQL systems and provides a seamless end-to-end optimization for analyzing all data types. AnDB automates query processing by generating multiple execution plans and selecting the optimal one through its optimizer, which balances accuracy, execution time, and financial cost based on user policies and internal optimizing mechanisms. AnDB future-proofs data management infrastructure, empowering users to effectively and efficiently harness the full potential of all kinds of data without starting from scratch.
Abstract:Human Activity Recognition (HAR) such as fall detection has become increasingly critical due to the aging population, necessitating effective monitoring systems to prevent serious injuries and fatalities associated with falls. This study focuses on fine-tuning the Vision Transformer (ViT) model specifically for HAR using radar-based Time-Doppler signatures. Unlike traditional image datasets, these signals present unique challenges due to their non-visual nature and the high degree of similarity among various activities. Directly fine-tuning the ViT with all parameters proves suboptimal for this application. To address this challenge, we propose a novel approach that employs Low-Rank Adaptation (LoRA) fine-tuning in the weight space to facilitate knowledge transfer from pre-trained ViT models. Additionally, to extract fine-grained features, we enhance feature representation through the integration of a serial-parallel adapter in the feature space. Our innovative joint fine-tuning method, tailored for radar-based Time-Doppler signatures, significantly improves HAR accuracy, surpassing existing state-of-the-art methodologies in this domain. Our code is released at https://github.com/wangyijunlyy/SelaFD.
Abstract:Foundational models have emerged as powerful tools for addressing various tasks in clinical settings. However, their potential development to breast ultrasound analysis remains untapped. In this paper, we present BUSGen, the first foundational generative model specifically designed for breast ultrasound image analysis. Pretrained on over 3.5 million breast ultrasound images, BUSGen has acquired extensive knowledge of breast structures, pathological features, and clinical variations. With few-shot adaptation, BUSGen can generate repositories of realistic and informative task-specific data, facilitating the development of models for a wide range of downstream tasks. Extensive experiments highlight BUSGen's exceptional adaptability, significantly exceeding real-data-trained foundational models in breast cancer screening, diagnosis, and prognosis. In breast cancer early diagnosis, our approach outperformed all board-certified radiologists (n=9), achieving an average sensitivity improvement of 16.5% (P-value<0.0001). Additionally, we characterized the scaling effect of using generated data which was as effective as the collected real-world data for training diagnostic models. Moreover, extensive experiments demonstrated that our approach improved the generalization ability of downstream models. Importantly, BUSGen protected patient privacy by enabling fully de-identified data sharing, making progress forward in secure medical data utilization. An online demo of BUSGen is available at https://aibus.bio.