Abstract:Large Language Model (LLM) routers dynamically select optimal models for given inputs. Existing approaches typically assume access to ground-truth labeled data, which is often unavailable in practice, especially when user request distributions are heterogeneous and unknown. We introduce Routing with Generated Data (RGD), a challenging setting in which routers are trained exclusively on generated queries and answers produced from high-level task descriptions by generator LLMs. We evaluate query-answer routers (using both queries and labels) and query-only routers across four diverse benchmarks and 12 models, finding that query-answer routers degrade faster than query-only routers as generator quality decreases. Our analysis reveals two crucial characteristics of effective generators: they must accurately respond to their own questions, and their questions must produce sufficient performance differentiation among the model pool. We then show how filtering for these characteristics can improve the quality of generated data. We further propose CASCAL, a novel query-only router that estimates model correctness through consensus voting and identifies model-specific skill niches via hierarchical clustering. CASCAL is substantially more robust to generator quality, outperforming the best query-answer router by 4.6% absolute accuracy when trained on weak generator data.
Abstract:Summarization of multi-party dialogues is a critical capability in industry, enhancing knowledge transfer and operational effectiveness across many domains. However, automatically generating high-quality summaries is challenging, as the ideal summary must satisfy a set of complex, multi-faceted requirements. While summarization has received immense attention in research, prior work has primarily utilized static datasets and benchmarks, a condition rare in practical scenarios where requirements inevitably evolve. In this work, we present an industry case study on developing an agentic system to summarize multi-party interactions. We share practical insights spanning the full development lifecycle to guide practitioners in building reliable, adaptable summarization systems, as well as to inform future research, covering: 1) robust methods for evaluation despite evolving requirements and task subjectivity, 2) component-wise optimization enabled by the task decomposition inherent in an agentic architecture, 3) the impact of upstream data bottlenecks, and 4) the realities of vendor lock-in due to the poor transferability of LLM prompts.
Abstract:Representing continuous time is a critical and under-explored challenge in modeling temporal event sequences with large language models (LLMs). Various strategies like byte-level representations or calendar tokens have been proposed. However, the optimal approach remains unclear, especially given the diverse statistical distributions of real-world event data, which range from smooth log-normal to discrete, spiky patterns. This paper presents the first empirical study of temporal tokenization for event sequences, comparing distinct encoding strategies: naive numeric strings, high-precision byte-level representations, human-semantic calendar tokens, classic uniform binning, and adaptive residual scalar quantization. We evaluate these strategies by fine-tuning LLMs on real-world datasets that exemplify these diverse distributions. Our analysis reveals that no single strategy is universally superior; instead, prediction performance depends heavily on aligning the tokenizer with the data's statistical properties, with log-based strategies excelling on skewed distributions and human-centric formats proving robust for mixed modalities.
Abstract:Task arithmetic is a powerful technique for transferring skills between Large Language Models (LLMs), but it often suffers from negative interference when models have diverged during training. We address this limitation by first aligning the models' parameter spaces, leveraging the inherent permutation, rotation, and scaling symmetries of Transformer architectures. We adapt parameter space alignment for modern Grouped-Query Attention (GQA) and SwiGLU layers, exploring both weight-based and activation-based approaches. Using this alignment-first strategy, we successfully transfer advanced reasoning skills to a non-reasoning model. Experiments on challenging reasoning benchmarks show that our method consistently outperforms standard task arithmetic. This work provides an effective approach for merging and transferring specialized skills across evolving LLM families, reducing redundant fine-tuning and enhancing model adaptability.




Abstract:Large Language Models (LLMs) have demonstrated impressive capabilities as intelligent agents capable of solving complex problems. However, effective planning in scenarios involving dependencies between API or tool calls-particularly in multi-turn conversations-remains a significant challenge. To address this, we introduce T1, a tool-augmented, multi-domain, multi-turn conversational dataset specifically designed to capture and manage inter-tool dependencies across diverse domains. T1 enables rigorous evaluation of agents' ability to coordinate tool use across nine distinct domains (4 single domain and 5 multi-domain) with the help of an integrated caching mechanism for both short- and long-term memory, while supporting dynamic replanning-such as deciding whether to recompute or reuse cached results. Beyond facilitating research on tool use and planning, T1 also serves as a benchmark for evaluating the performance of open-source language models. We present results powered by T1-Agent, highlighting their ability to plan and reason in complex, tool-dependent scenarios.




Abstract:Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers that require the same amount of floating point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay and learning rate re-warming and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) do the MoE transformer's routers exacerbate forgetting relative to a dense model?; 2) do the routers maintain a balanced load on previous distributions after CPT?; 3) are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what follows, we conduct a large-scale (>2B parameter switch and DeepSeek MoE LLMs trained for 600B tokens) empirical study across four MoE transformers to answer these questions. Our results establish a surprising robustness to distribution shifts for both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.




Abstract:Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.




Abstract:Recently, numerous preference optimization algorithms have been introduced as extensions to the Direct Preference Optimization (DPO) family. While these methods have successfully aligned models with human preferences, there is a lack of understanding regarding the contributions of their additional components. Moreover, fair and consistent comparisons are scarce, making it difficult to discern which components genuinely enhance downstream performance. In this work, we propose RainbowPO, a unified framework that demystifies the effectiveness of existing DPO methods by categorizing their key components into seven broad directions. We integrate these components into a single cohesive objective, enhancing the performance of each individual element. Through extensive experiments, we demonstrate that RainbowPO outperforms existing DPO variants. Additionally, we provide insights to guide researchers in developing new DPO methods and assist practitioners in their implementations.




Abstract:Preference tuning is a crucial process for aligning deep generative models with human preferences. This survey offers a thorough overview of recent advancements in preference tuning and the integration of human feedback. The paper is organized into three main sections: 1) introduction and preliminaries: an introduction to reinforcement learning frameworks, preference tuning tasks, models, and datasets across various modalities: language, speech, and vision, as well as different policy approaches, 2) in-depth examination of each preference tuning approach: a detailed analysis of the methods used in preference tuning, and 3) applications, discussion, and future directions: an exploration of the applications of preference tuning in downstream tasks, including evaluation methods for different modalities, and an outlook on future research directions. Our objective is to present the latest methodologies in preference tuning and model alignment, enhancing the understanding of this field for researchers and practitioners. We hope to encourage further engagement and innovation in this area.




Abstract:This paper investigates discrete and continuous speech representations in Large Language Model (LLM)-based Automatic Speech Recognition (ASR), organizing them by feature continuity and training approach into four categories: supervised and unsupervised for both discrete and continuous types. We further classify LLMs based on their input and autoregressive feedback into continuous and discrete-space models. Using specialized encoders and comparative analysis with a Joint-Training-From-Scratch Language Model (JTFS LM) and pre-trained LLaMA2-7b, we provide a detailed examination of their effectiveness. Our work marks the first extensive comparison of speech representations in LLM-based ASR and explores various modeling techniques. We present an open-sourced achievement of a state-of-the-art Word Error Rate (WER) of 1.69\% on LibriSpeech using a HuBERT encoder, offering valuable insights for advancing ASR and natural language processing (NLP) research.