Abstract:Large Language Model (LLM) routers dynamically select optimal models for given inputs. Existing approaches typically assume access to ground-truth labeled data, which is often unavailable in practice, especially when user request distributions are heterogeneous and unknown. We introduce Routing with Generated Data (RGD), a challenging setting in which routers are trained exclusively on generated queries and answers produced from high-level task descriptions by generator LLMs. We evaluate query-answer routers (using both queries and labels) and query-only routers across four diverse benchmarks and 12 models, finding that query-answer routers degrade faster than query-only routers as generator quality decreases. Our analysis reveals two crucial characteristics of effective generators: they must accurately respond to their own questions, and their questions must produce sufficient performance differentiation among the model pool. We then show how filtering for these characteristics can improve the quality of generated data. We further propose CASCAL, a novel query-only router that estimates model correctness through consensus voting and identifies model-specific skill niches via hierarchical clustering. CASCAL is substantially more robust to generator quality, outperforming the best query-answer router by 4.6% absolute accuracy when trained on weak generator data.
Abstract:Large Language Models (LLMs) excel at static interactions, where they answer user queries by retrieving knowledge encoded in their parameters. However, in many real-world settings, such as educational tutoring or medical assistance, relevant information is not directly available and must be actively acquired through dynamic interactions. An interactive agent would recognize its own uncertainty, ask targeted questions, and retain new knowledge efficiently. Prior work has primarily explored effective ways for a teacher to instruct the student, where the teacher identifies student gaps and provides guidance. In this work, we shift the focus to the student and investigate effective strategies to actively query the teacher in seeking useful information. Across math and coding benchmarks, where baseline student models begin with near-zero performance, we show that student-led approaches consistently yield absolute Pass@k improvements of at least 0.5 over static baselines. To improve question quality, we train students using Direct Preference Optimization (DPO) with guidance from either self or stronger students. We find that this guided training enables smaller models to learn how to ask better questions, further enhancing learning efficiency.
Abstract:The phenomenon of sound symbolism, the non-arbitrary mapping between word sounds and meanings, has long been demonstrated through anecdotal experiments like Bouba Kiki, but rarely tested at scale. We present the first computational cross-linguistic analysis of sound symbolism in the semantic domain of size. We compile a typologically broad dataset of 810 adjectives (27 languages, 30 words each), each phonemically transcribed and validated with native-speaker audio. Using interpretable classifiers over bag-of-segment features, we find that phonological form predicts size semantics above chance even across unrelated languages, with both vowels and consonants contributing. To probe universality beyond genealogy, we train an adversarial scrubber that suppresses language identity while preserving size signal (also at family granularity). Language prediction averaged across languages and settings falls below chance while size prediction remains significantly above chance, indicating cross-family sound-symbolic bias. We release data, code, and diagnostic tools for future large-scale studies of iconicity.